精英家教网 > 高中数学 > 题目详情
17.求下列各三角函数值
(1)sin$\frac{5π}{4}$;(2)cos(-$\frac{79π}{6}$);(3)tan(-675°)

分析 由条件利用诱导公式化简所给式子的值,可得结果.

解答 解:(1)sin$\frac{5π}{4}$=-sin$\frac{π}{4}$=-$\frac{\sqrt{2}}{2}$;
(2)cos(-$\frac{79π}{6}$)=cos(-14π×6+$\frac{5π}{6}$)=cos$\frac{5π}{6}$=-cos$\frac{π}{6}$=-$\frac{\sqrt{3}}{2}$;
(3)tan(-675°)=tan(-180°×4+45°)=tan45°=1.

点评 本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.某同学在借助计算器求“方程lgx=2-x的近似解(精确到0.1)”时,设f(x)=lgx+x-2,算得f(1)<0,f(2)>0;在以下过程中,他用“二分法”又取了4个x的值,计算了其函数值的正负,并得出判断:方程的近似解是x=1.8.那么他所取的x的4个值中最后一个值是1.8125.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=2sin(2x+θ+$\frac{π}{3}$)(-$\frac{π}{2}$≤θ<$\frac{3π}{2}$)为奇函数,且在[-$\frac{π}{4}$,0]上为减函数的θ值是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,已知BC=8,D在BC上,BD=DC,∠BAC=135°,B=2C,求AD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:在调查某校高一学生的平均身高时宜采用系统抽样;命题q:在频率分布直方图中,中位数左边和右边的直方图的面积相等,则下列命题中为真命题的是(  )
A.¬qB.p∨(¬q)C.(¬p)∧qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)求椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1所围成图形的面积;
(2)求椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1所围成图形分别绕x轴及y轴旋转而成的旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=($\frac{1}{2}$)|x-1|+2cosπx(-4≤x≤6)的所有零点之和为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+2xsinθ+1,x∈[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$].
(1)当θ=$\frac{π}{6}$时,求f(x)的最大值和最小值;
(2)若f(x)在[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]上是单调函数,且θ∈[0,2π],求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x≤0}\\{{x}^{2}-3ax+a,x>0}\end{array}\right.$有三个不同的零点,则实数a的取值范围是(  )
A.($\frac{4}{9}$,1]B.[$\frac{4}{9}$,1]C.($\frac{4}{9}$,+∞)D.(0,1]

查看答案和解析>>

同步练习册答案