精英家教网 > 高中数学 > 题目详情

【题目】已知点为抛物线 的焦点,点为抛物线上一定点。

1直线过点交抛物线两点,若,求直线的方程;

(2)过点作两条倾斜角互补的直线分别交抛物线于异于点的两点,试证明直线的斜率为定值,并求出该定值。

【答案】,或;(1.

【解析】试题分析:(1)依题意,点的坐标为.设直线的方程为

联立方程组: ,消去并整理得: ,设,则解得,写出直线的方程(2)过点作两条倾斜角互补的直线分别交抛物线于异于点的两点,设直线的斜率为,则直线的斜率为.令,联立方程组: ,消去并整理得: ,因为点的坐标为,所以,故,用-t去换点P坐标中的t可得点的坐标为,计算直线的斜率即可.

试题解析:

1)依题意,点的坐标为.设直线的方程为

联立方程组: ,消去并整理得:

,则

,解得: .

故直线的方程为,或.

(2)设直线的斜率为,则直线的斜率为.令

联立方程组: ,消去并整理得:

,因为点的坐标为,所以,故

从而点的坐标为,用-t去换点P坐标中的t可得点的坐标为,所以直线的斜率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市电视台为了提高收视率而举办有奖问答活动,随机对该市15~65岁的人群抽样了 人,回答问题统计结果及频率分布直方图如图表所示.

(1)分别求出 的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,满足:,则的从小到大顺序为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 为等边三角形,平面平面 的中点

)求证:

)求二面角的余弦值

平面,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从参加某次高中英语竞赛的学生中抽出100名,将其成绩整理后,绘制频率分布直方图(如图所示).其中样本数据分组区间为: .

Ⅰ)试求图中的值,并计算区间上的样本数据的频率和频数;

试估计这次英语竞赛成绩的众数、中位数及平均成绩结果精确到.

注:同一组数据用该组区间的中点值作为代表

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线过点(3,-2)且与椭圆4x2+9y2=36有相同的焦点.

(I)求双曲线的标准方程.

(II)若点M在双曲线上, 是双曲线的左、右焦点,且|MF1|+|MF2|=试判断的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中, 分别在上, ,现将四边形沿折起,使平面平面

)若是否存在折叠后的线段上存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由.

)求三棱锥的体积的最大值,并求此时点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式.

若关于的不等式)的解集为,求 的值;

解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件 ,若目标函数2z=2x+ny(n>0),z的最大值为2,则y=tan(nx+ )的图象向右平移 后的表达式为(
A.y=tan(2x+
B.y=tan(x﹣
C.y=tan(2x﹣
D.y=tan2x

查看答案和解析>>

同步练习册答案