精英家教网 > 高中数学 > 题目详情

【题目】一个学生在一次竞赛中要回答道题是这样产生的道物理题中随机抽取道化学题中随机抽取道生物题中随机抽取.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为化学题的编号为生物题的编号为.

【答案】见解析.

【解析】试题分析:满足数据的随机性,利用计算器的随机函数分别产生3个不同的1~15之间的整数随机数,3个不同的16~35之间的整数随机数,2个不同的36~47之间的整数随机数如果有一个重复,则重新产生一个,这样即可。

 利用计算器的随机函数RANDI(1,15)产生3个不同的1~15之间的整数随机数(如果有一个重复,则重新产生一个);再利用计算器的随机函数RANDI(16,35)产生3个不同的16~35之间的整数随机数(如果有一个重复,则重新产生一个);再用计算器的随机函数RANDI(36,47)产生2个不同的36~47之间的整数随机数(如果有一个重复,则重新产生一个),这样就得到8道题的序号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下图是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.

(Ⅰ) 求的值并估计全校3000名学生中“读书迷”大概有多少?(将频率视为概率)

(Ⅱ)根据已知条件完成下面的列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?

非读书迷

读书迷

合计

15

45

合计

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若 的一个极值点,求 值及的单调区间;

(2)当 时,求在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人组成一个小组参加电视台举办的听曲猜歌名活动,在每一轮活动中,依次播放三首乐曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜错,则活动立即结束;若三人均猜对,则该小组进入下一轮,该小组最多参加三轮活动.已知每一轮甲猜对歌名的概率是,乙猜对歌名的概率是,丙猜对歌名的概率是,甲、乙、丙猜对与否互不影响.

(I)求该小组未能进入第二轮的概率;

(Ⅱ)记乙猜歌曲的次数为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数.

1)求的极值;

2)当在什么范围内取值时,曲线轴仅有一个交点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为正实数

1)当时,求曲线在点处的切线方程;

2求证:

3)若函数且只有零点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)若 ,求函数的单调区间;

(2)若,且方程内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}{bn}中,a12b14,且anbnan1成等差数列,bnan1bn1成等比数列{nN}

a2a3a4b2b3b4,由此猜测{an}{bn}的通项公式,并证明你的结论;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱台中, , ,平面平面

(1)求证: 平面

(2)点上一点,二面角的大小为,求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案