精英家教网 > 高中数学 > 题目详情
17.根据$\sqrt{11-2}=3,\sqrt{1111-22}=33,\sqrt{111111-222}=333…$,猜得$\sqrt{\underbrace{11…1}_{2n个1}-\underbrace{22…2}_{n个2}}({n∈{N^+}})$的值是(  )
A.$\underbrace{33…3}_{n个}$B.$\underbrace{33…3}_{n+1个}$C.$\underbrace{33…3}_{2n个}$D.$\underbrace{33…3}_{2n-1个}$

分析 根据已知中的等式,可得3的个数等于根据内2的个数,进而得到答案.

解答 解:∵$\sqrt{11-2}=3,\sqrt{1111-22}=33,\sqrt{111111-222}=333…$,
归纳可得:$\sqrt{\underbrace{11…1}_{2n个1}-\underbrace{22…2}_{n个2}}({n∈{N^+}})$=$\underbrace{33…3}_{n个}$,
故选:A

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如表:
xx1$\frac{1}{3}$x2$\frac{7}{3}$x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)0$\sqrt{3}$0-$\sqrt{3}$0
(1)请写出上表的x1、x2、x3,并直接写出函数的解析式;
(2)将f(x)的图象沿x轴向右平移$\frac{2}{3}$个单位得到函数g(x)的图象,P、Q分别为函数g(x)图象的最高点和最低点(如图),求∠OQP的大小;
(3)求△OQP的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)=ex-e-x,g(x)=ex+e-x
(1)分别判断f(x),g(x)的奇偶性,并说明理由;
(2)求[f(x)]2-[g(x)]2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线l1:x+(1+m)y+m-2=0与直线l2:mx+2y+8=0平行,则经过点A(3,2)且与直线l1垂直的直线方程为2x-y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1(-1,0),且离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为k的直线l过点P(0,2),且与椭圆C相交于A,B两点,若|AB|=$\frac{12\sqrt{2}}{7}$,求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x>0,y>0,若不等式a(x+y)≥x+$\sqrt{\frac{1}{2}xy}$恒成立,则a的最小值为(  )
A.$\frac{\sqrt{6}+2}{4}$B.$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\sqrt{6}$+2D.$\sqrt{6}$+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.平面几何中,若△ABC的内切圆半径为r,其三边长分别为a,b,c,则△ABC的面积$S=\frac{1}{2}(a+b+c)•r$.类比上述命题,若三棱锥的内切球半径为R,其四个面的面积分别为S1,S2,S3,S4,猜想三棱锥体积V的一个公式.若三棱锥P-ABC的体积V=$\frac{{2\sqrt{2}}}{3}$,其四个面的面积均为$\sqrt{3}$,根据所猜想的公式计算该三棱锥P-ABC的内切球半径R为(  )
A.$\frac{{\sqrt{6}}}{6}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{6}}}{12}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3+ax.
(Ⅰ)若f(x)在x=1处的切线平行于x轴,求a的值和f(x)的极值;
(Ⅱ)若过点A(1,0)可作曲线y=f(x)的三条切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设区域Ω={(x,y)|0≤x≤2,0≤y≤2},区域A={(x,y)|xy≤1,(x,y)∈Ω},在区域Ω中随机取一个点,则该点在A中的概率(  )
A.$\frac{1+2ln2}{4}$B.$\frac{1+2ln2}{8}$C.$\frac{2ln2}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案