精英家教网 > 高中数学 > 题目详情
14.在如图所示的矩形ABCD中,AB=2,AD=1,E为线段BC上的点,则$\overrightarrow{AE}•\overrightarrow{DE}$的最小值为(  )
A.2B.$\frac{15}{4}$C.$\frac{17}{4}$D.4

分析 以B为坐标原点,BC所在直线为x轴建立直角坐标系,利用坐标表示$\overrightarrow{AE}$•$\overrightarrow{DE}$,计算它的最小值.

解答 解:如图所示,
以B为坐标原点,BC所在直线为x轴建立直角坐标系,
则A(0,2),D(1,2),E(x,0),
所以$\overrightarrow{AE}$•$\overrightarrow{DE}$=(x,-2)•(x-1,-2)
=x2-x+4
=${(x-\frac{1}{2})}^{2}$+$\frac{15}{4}$,
因为E为线段BC上的点,所以x∈[0,1],
所以当$x=\frac{1}{2}$时,$\overrightarrow{AE}\;•\;\overrightarrow{DE}$取得最小值$\frac{15}{4}$.
故选:B.

点评 本题考查了平面向量数量积的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.关于x的不等式|x+cos2θ|≤sin2θ的解是(  )
A.cos2θ≤x≤1B.-1≤x≤-cos2θC.-cos2θ≤x≤1D.-1≤x≤cos2θ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,已知△PF1F2的两个顶点为F1(-$\sqrt{2}$a,0),F2($\sqrt{2}$a,0)(a>0),顶点P在曲线C上运动,△PF1F2的内切圆与x轴的切点为A,满足|AF1|-|AF2|=2a.
(1)设D(m,n)为曲线C上一点,试判断直线l:mx-ny=a2与曲线C的位置关系;
(2)过曲线C上任意两个不同点M,N分作C的切线l1,l2,若l1与l2的交点为E,试探究:对于任意的正实数a,直线OE(O是原点)是否经过MN的中点G?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(1)设x>0,y>0,若$\sqrt{2}$是2x与4y的等比中项,则①x2+2y2的最小值为$\frac{1}{3}$.②$\frac{1}{x}+\frac{1}{y}$的最小值为3+2$\sqrt{2}$.
(2)根据以上两个小题的解答,总结说明含条件等式的求最值问题的解决方法(写出两个)
①二次函数的性质②均值不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C的中心为坐标原点O,焦点在y轴上,离心率$e=\frac{{\sqrt{2}}}{2}$,椭圆上的点到焦点的最短距离为$1-\frac{{\sqrt{2}}}{2}$,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A,B,且$\overline{AP}=3\overline{PB}$.
(1)求椭圆C的方程;
(2)求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示(图中网格的边长为1个单位),其中俯视图为扇形,则该几何体的体积为(  )
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{14π}{3}$D.$\frac{16π}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)这种抽样方法是哪一种?
(2)将这两组数据用茎叶图表示;
(3)将两组数据比较,说明哪个车间的产品较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某程序流程图如图所示,依次输入函数$f(x)=sin(x-\frac{π}{6})$,$f(x)=\frac{1}{2}sin(2x+\frac{π}{6})$,f(x)=tanx,$f(x)=cos(2x-\frac{π}{6})$,执行该程序,输出的数值p=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}的前项和为${S_n}={n^2}-3n$,则通项公式an等于(  )
A.an=2n-3B.an=2n-4C.an=3-3nD.an=2n-5

查看答案和解析>>

同步练习册答案