精英家教网 > 高中数学 > 题目详情
17.关于x的不等式|x+cos2θ|≤sin2θ的解是(  )
A.cos2θ≤x≤1B.-1≤x≤-cos2θC.-cos2θ≤x≤1D.-1≤x≤cos2θ

分析 利用绝对值不等式展开,再由同角三角函数的基本关系式与倍角公式化简得答案.

解答 解:由|x+cos2θ|≤sin2θ,得-sin2θ≤x+cos2θ≤sin2θ,
即-(sin2θ+cos2θ)≤x≤-(cos2θ-sin2θ),
∴-1≤x≤-cos2θ.
故选:B.

点评 本题考查三角函数中的恒等变换应用,考查了同角三角函数的基本关系式与倍角公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知P为等边三角形ABC内一点,且满足$\overrightarrow{PA}$+λ$\overrightarrow{PB}$+(1+λ)$\overrightarrow{PC}$=$\overrightarrow{0}$,若三角形PAC与三角形PAB的面积之比为$\frac{1}{3}$,则实数λ的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在某市2015年1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N(98,100),已知参加本次考试的全市理科学生约9450人,某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?(  )
A.1500B.1700C.4500D.8000

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,且斜边AB=2$\sqrt{2}$,侧棱AA1=3,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ为实数).
(1)求证:不论λ取何值时,恒有CD⊥B1E;
(2)当λ=$\frac{1}{3}$时,求平面CDE与平面ABC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.sin45°sin75°+sin45°sin15°=(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知i为虚数单位,则$\frac{(2+i)^{2}}{i}$=(  )
A.4-3iB.4+3iC.3-4iD.3+4i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在ABC中,D是BC上的一点.已知∠B=60°,AD=2,AC=$\sqrt{10}$,DC=2,则AB=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的奇函数f(x),满足f(x+4)+f(x)=0且在区间[0,2]上是增函数,若函数y=f(x)-k(k>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=(  )
A.4B.8C.-4D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在如图所示的矩形ABCD中,AB=2,AD=1,E为线段BC上的点,则$\overrightarrow{AE}•\overrightarrow{DE}$的最小值为(  )
A.2B.$\frac{15}{4}$C.$\frac{17}{4}$D.4

查看答案和解析>>

同步练习册答案