精英家教网 > 高中数学 > 题目详情
2.已知直线l与椭圆C:$\frac{x^2}{4}+{y^2}=1$交于A,B两点,且|AB|=2,则直线l与圆x2+y2=1的位置关系为(  )
A.相离B.相交C.相切D.相交或相切

分析 画出椭圆与圆的图形,通过线段AB的距离,判断位置关系即可.

解答 解:椭圆C:$\frac{x^2}{4}+{y^2}=1$与圆x2+y2=1的图形如图,AB的距离为2,显然AB是椭圆的短轴长时,直线l与椭圆相交,椭圆的通经长为:$\sqrt{3}$,
在图形中存在|AB|=2,直线l与圆相切,设直线l:y=kx+m,由题意可得:$\frac{|m|}{\sqrt{1+{k}^{2}}}=1$…①,$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,消去y整理可得(1+4k2)x2+8kmx+4m2-4=0,可得x1+x2=$\frac{-8mk}{1+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$,
|AB|=$\sqrt{1+{k}^{2}}|{x}_{2}-{x}_{1}|$=2,代入x1+x2,x1x2,化简整理可得:$\frac{2\sqrt{1+{k}^{2}}}{1+4{k}^{2}}\sqrt{4{k}^{2}-{m}^{2}+1}=1$…②
联立①②消去m可得:$\frac{2\sqrt{1+{k}^{2}}}{1+4{k}^{2}}\sqrt{3{k}^{2}}=1$,化简可得:4k4-4k2+1=0,解得k=$±\frac{\sqrt{2}}{2}$,
所以转化的直线l存在,由4条.
所以直线与圆的位置关系是相交或相切.
故选:D.

点评 本题考查椭圆的简单性质以及圆的图形的应用,考查数形结合分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}的公差为d,等比数列{bn}的公比为q,设{an},{bn}的前n项和分别为Sn,Tn,若${n^2}({T_n}+1)={2^n}{S_n}$,n∈N*,则d=2,q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x-a)e-x,其中a为常数.
(1)判断f(x)在x=0处的切线是否经过一个定点,并说明理由;
(2)讨论f(x)在区间[-2,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={-1,0,1},B={x|x=sin$\frac{2k+1}{x}$,k∈Z},则∁AB=(  )
A.B.0C.{0}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=$\frac{1}{3}$x3+ax(a∈R),且曲线f(x)在x=$\frac{1}{2}$处的切线与直线y=-$\frac{3}{4}$x-1平行.
(Ⅰ)求a的值及函数f(x)的解析式;
(Ⅱ)若函数y=f(x)-m在区间[-3,$\sqrt{3}$]上有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式|x+1|-|x-2|>1的解集为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.f(x)=$\sqrt{{x}^{2}+2x+1}$,g(x)=|x-1|.
(1)求不等式|f(x)-1|<2的解集;
(2)当|a+b|-|a-b|>2|b|[f(x)-g(x)](b≠0,a,b∈R)的解集非空,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,一张A4纸的长、宽分别为2$\sqrt{2}$a,2a,A,B,C,D分别是其四条边的中点,现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体,关于该多面体的下列命题,正确的是①②③④.(写出所有正确命题的序号).
①该多面体是三棱锥;②平面BAD⊥平面BCD;
③平面BAC⊥平面ACD;④该多面体外接球的表面积为5πa2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求以原点为顶点,坐标轴为对称轴,并且经过点P(-4,-2)的抛物线的标准方程.

查看答案和解析>>

同步练习册答案