精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知任意角θ以x轴非负半轴为始边,若终边经过点P(x0 , y0),且|OP|=r(r>0),定义sicosθ= ,称“sicosθ”为“正余弦函数”.对于正余弦函数y=sicosx,有同学得到如下结论: ①该函数是偶函数;
②该函数的一个对称中心是( ,0);
③该函数的单调递减区间是[2kπ﹣ ,2kπ+ ],k∈Z.
④该函数的图象与直线y= 没有公共点;
以上结论中,所有正确的序号是

【答案】②④
【解析】解:对于①,根据三角函数的定义可知x0=rcosx,y0=rsinx, 所以sicosθ=sinx+cosx= sin(x+ ),图象不关于y轴对称,不是偶函数,错误;
对于②,因为y=sicosθ=f( )= sin( + )=0,
所以该函数的图象关于点( ,0)对称,②正确;
对于③,因为y=f(x)=sicosθ= sin(x+ ),所以由2kπ+ ≤x+ ≤2kπ+
可得2kπ+ ≤x≤2kπ+ ,k∈Z,故错误;
该函数的最大值为 ,其图象与直线y= 无公共点,④正确.
所以答案是②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下

等级

1

2

3

4

5

频率

0.05

m

0.15

0.35

n


(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过点P(2,﹣1),且在两坐标轴上的截距之和为2,圆M的圆心在直线2x+y=0上,且与直线l相切于点P.
(1)求直线l的方程;
(2)求圆M的方程;
(3)求圆M在y轴上截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在上学路上要经过三个带有红绿灯的路口.已知他在三个路口遇到红灯的概率依次是,遇到红灯时停留的时间依次是秒、秒、秒,且在各路口是否遇到红灯是相互独立的.

(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,

(2)求这名同学在上学路上因遇到红灯停留的总时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x|x﹣2|.若关于x的方程f2(x)+af(x)+b=0(a,b∈R)恰有10个不同实数解,则a的取值范围为(
A.(0,2)
B.(﹣2,0)
C.(1,2)
D.(﹣2,﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC.

(1)求证:PA∥平面QBC;
(2)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)当x∈[0, ]时,求| + |的取值范围;
(2)若g(x)=( + ,求当k为何值时,g(x)的最小值为﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的定义域为{x|x∈R,且x≠2},且y=f(x+2)是偶函数,当x<2时,f(x)=|2x﹣1|,那么当x>2时,函数f(x)的递减区间是(
A.(3,5)
B.(3,+∞)
C.(2,+∞)
D.(2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣2)2+y2=9,直线l:x+y=0.
(1)求过圆C的圆心且与直线l垂直的直线n的方程;
(2)求与圆C相切,且与直线l平行的直线m的方程.

查看答案和解析>>

同步练习册答案