精英家教网 > 高中数学 > 题目详情
复数z满足条件log2(|z|-2)<1,则z在复平面内的对应点构成的图形的面积是
 
考点:复数的代数表示法及其几何意义
专题:数系的扩充和复数
分析:设出复数z,代入log2(|z|-2)<1,得到复数z在复平面内对应的点Z的集合构成的图形,由圆的面积公式得答案.
解答: 解:设z=x+yi(x,y∈R),
由log2(|z|-2)<1,可得2≤|z|≤4,得2≤
x2+y2
≤4

即4≤x2+y2≤16.
∴复数z在复平面内对应的点Z的集合构成的图形是半径为2的圆与半径为4之间的部分.
其面积为42π-22π=12π.
故答案为:12π.
点评:本题考查了复数的代数表示法及其几何意义,考查了复数模的求法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={
1
2i
,i2,|5i2|,
(1+i)2
i
,-
i2
2
},则集合A∩R+(R+表示大于0的实数)的子集个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(x+
5
)的图象上所有的点的横坐标缩短到原来的
1
4
倍(纵坐标不变)得
 
 的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

0
sinxdx
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A=30°,B=120°,b=12,则c=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在所有棱长都相等的正四棱锥P-ABCD中,则侧棱PA与底面ABCD所成角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长分别为a,b,c,且面积S△ABC=
1
4
(b2+c2-a2),则A等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)的图象如图所示,则ω=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足f(x)+xf′(x)>0,设a=
f(1)
2
,b=f(2),则a,b与0的大小关系为(  )
A、a>0>b
B、b<0<a
C、a>b>0
D、b>a>0

查看答案和解析>>

同步练习册答案