精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx+
1
2
x2-(1+a)x.
(1)求函数f(x)的单调区间;
(2)若f(x)≥0对定义域中的任意x恒成立,求实数a的取值范围;
(3)证明:对任意正整数m,n,不等式
1
ln(m+1)
+
1
ln(m+2)
+…+
1
ln(m+n)
n
m(m+n)
恒成立.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(1)求出f(x)的导数,由此根据a的取值范围进行分类讨论,能求出函数f(x)的单调区间.
(2)由于f(1)=-
1
2
,当a>0时,f(1)<0,此时f(x)≥0对定义域内的任意x不是恒成立的.当a≤0时,由(1)得f(x)在区间(0,+∞)上取得最小值为f(1)=-
1
2
,由此能求出实数a的取值范围.
(3)由(2)知,当a=-
1
2
时,f(x)≥0,当且仅当x=1时,等号成立,这个不等式等价于lnx≤x2-x.由此能够证明对任意的正整数m,n,不等式恒成立.
解答: 解:(1)∵f′(x)=
a
x
+x-(1+a),
①当a≤0时,若0<x<1,则f′(x)<0,
故函数f(x)的单调减区间是(0,1);
若x>1,则f′(x)>0,故函数f(x)的增区间是(1,+∞).
②当0<a<1时,函数f(x)的单调减区间是(a,1);
单调增区间是(0,a),(1,+∞).
③当a=1时,则f′(x)=
(x-1)2
x
≥0,
故函数f(x)的单调增区间是(0,+∞);
④当a>1时,函数f(x)的单调递减区间是(1,a);
函数f(x)的单调递增区间是(0,1),(a,+∞).
(2)由于f(1)=-
1
2

当a>0时,f(1)<0,
此时f(x)≥0对定义域内的任意x不是恒成立的.
当a≤0时,由(1)得f(x)在区间(0,+∞)上的极小值,也是最小值为f(1)=-
1
2

此时,f(1)≥0,解得a≤-
1
2

故实数a的取值范围是(-∞,-
1
2
).
(3)由(2)知,当a=-
1
2
时,
f(x)=-
1
2
lnx+
1
2
x2-
1
2
x≥0,当且仅当x=1时,等号成立,
这个不等式等价于lnx≤x2-x.
当x>1时,变换为
1
lnx
1
x2-x
=
1
x-1
-
1
x

因此不等式左边>(
1
m
-
1
m+1
)+(
1
m+1
-
1
m+2
)+…+(
1
m+n-1
-
1
m+n
)=
1
m
-
1
m+n
=
n
m(m+n)

从而得证.
点评:本题考查函数的单调区间的求法,考查实数的取值范围的求法,考查不等式恒成立的证明.解题时要认真审题,仔细解答,注意导数的性质和分类讨论思想的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x+a,x∈[-1,1],a∈R.
(1)求f(x)的极值;
(2)定义在D内的函数y=f(x),若对于任意的x1,x2∈D都有|f(x1)-f(x2)|<1,则称函数y=f(x)为“A型函数”,若是,给出证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn,且an和Sn满足4Sn=(an+1)2(n=1,2,3…).
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
1
anan+1
,求{bn}的前n项和Tn
(Ⅲ)在(Ⅱ)的条件下,对任意n∈N*,Tn
m
32
都成立,求整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m是复数z=(
1-i
1+i
2-i(1+2i)的实部,且n=π2-∫
 
π
0
(sint+2t)dt,求(mx+
1
nx
6的展开式中含n2的项及中间项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,对任意的x,x′∈R,均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=-3,f(x)是减函数,求y=f(x)在[m,n](m,n∈Z,且mn<0)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

四个不同的小球放入四个不同的盒子里,求在下列条件下各有多少种不同的放法?
(1)恰有一个盒子里放2个球;
(2)恰有两个盒子不放球.

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=|log2(|x|-1)|的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P中的元素x满足x∈N,且1<x<a,且集合P中恰有三个元素,则整数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x-1|+|x-2|<3的解集是
 

查看答案和解析>>

同步练习册答案