精英家教网 > 高中数学 > 题目详情
20.函数y=$\sqrt{2sin(2x-\frac{π}{3})-1}$的增区间是(  )
A.$[kπ+\frac{π}{4},kπ+\frac{17π}{12}],(k∈Z)$B.$[kπ+\frac{π}{6},kπ+\frac{5π}{12}],(k∈Z)$
C.$[kπ+\frac{π}{4},kπ+\frac{5π}{12}],(k∈Z)$D.$[kπ-\frac{π}{12},kπ+\frac{5π}{12}],(k∈Z)$

分析 利用换元法结合复合函数单调性之间的关系进行求解即可,注意定义域.

解答 解:由2sin(2x-$\frac{π}{3}$)-1≥0得sin(2x-$\frac{π}{3}$)≥$\frac{1}{2}$,
则$\frac{π}{6}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{5π}{6}$+2kπ,
即设t=2sin(2x-$\frac{π}{3}$)-1,
则y=$\sqrt{t}$为增函数,
要求函数$y=\sqrt{2sin(2x-\frac{π}{3})-1}$的增区间,
即求函数设t=2sin(2x-$\frac{π}{3}$)-1的增区间,
即$\frac{π}{6}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z,
即kπ+$\frac{π}{4}$≤x≤kπ+$\frac{5π}{12}$,k∈Z,
即函数$y=\sqrt{2sin(2x-\frac{π}{3})-1}$的增区间是[kπ+$\frac{π}{4}$,kπ+$\frac{5π}{12}$],k∈Z,
故选:C.

点评 本题主要考查复合函数单调性的求解,利用换元法结合复合函数单调性之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知tanx=2,则$\frac{2cosx-sinx}{cosx}$(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=$\left\{\begin{array}{l}{aln(x+1),x≥0}\\{\frac{1}{3}{x}^{3}-ax,x<0}\end{array}\right.$g(x)=ex-1,函数y=f(x)的图象在点(1,f(1))与点(-1,f(-1))处的切线互相垂直,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设$\overrightarrow m,\overrightarrow n$是两个不共线的向量,若$\overrightarrow{AB}=\overrightarrow m+5\overrightarrow n,\overrightarrow{BC}=-2\overrightarrow{m}+8\overrightarrow n,\overrightarrow{CD}=4\overrightarrow m+2\overrightarrow n$,则(  )
A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
(1)求数列{an}的通项公式;
(2)设Tn是数列{$\frac{1}{lg{a}_{n}•lg{a}_{n+1}}$}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有下列说法:
①若向量$\overrightarrow{AB}$、$\overrightarrow{CD}$满足|$\overrightarrow{AB}$|>|$\overrightarrow{CD}$|,且$\overrightarrow{AB}$与$\overrightarrow{CD}$方向相同,则$\overrightarrow{AB}$>$\overrightarrow{CD}$;
②|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|;
③共线向量一定在同一直线上;
④由于零向量的方向不确定,故其不能与任何向量平行;
其中正确说法的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2.
(1)若$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为45°,求|$\overrightarrow{a}$+$\overrightarrow{b}$|
(2)若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给定命题:p:x<3,q:$\frac{3-x}{x-2}$>0,则p是q的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知cos2a=$\frac{1}{3}$(cosa+sina),则cosa-sina=±$\sqrt{2}$或$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案