精英家教网 > 高中数学 > 题目详情
13.使f(x)=sin(2x+θ)-$\sqrt{3}$cos(2x+θ)为奇函数,且在[0,$\frac{π}{4}$]上是减函数的θ的一个值是(  )
A.$\frac{4π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

分析 利用辅助角公式化简函数的解析式为2sin(2x+θ-$\frac{π}{3}$),再根据它是奇函数,可得θ=kπ+$\frac{π}{3}$,k∈z.再根据它在[0,$\frac{π}{4}$]上是减函数,分类讨论求得θ的值.

解答 解:∵f(x)=sin(2x+θ)-$\sqrt{3}$cos(2x+θ)=2sin(2x+θ-$\frac{π}{3}$)为奇函数,
∴θ-$\frac{π}{3}$=kπ,∴θ=kπ+$\frac{π}{3}$,k∈Z.
当k为奇数时,令k=2n-1,θ=2nπ-$\frac{2π}{3}$,n∈z,此时f(x)=-2sin2x,满足在[0,$\frac{π}{4}$]上是减函数,
当k为偶数时,令k=2n,θ=2nπ+$\frac{π}{3}$,n∈z,此时f(x)=2sin2x,不满足在[0,$\frac{π}{4}$]上是减函数.
故选:B.

点评 本题主要考查辅助角公式,正弦函数的奇偶性和单调性,体现了分类讨论的数学思想,化简函数的解析式是解题的突破口,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.经过A(-3,1),且平行于y轴的直线方程为x=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a,b,c分别是△ABC中角A,B,C的对边长,若$A=\frac{π}{3},b=2acosB,c=1$,则S△ABC=$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.电子商务专业的小明毕业后开了个淘宝店,已知第一天商品销售利润为-200元(即亏本),此后每天的利润成等差数列,若月末统计31天的平均利润为每天100元.
(1)求这个等差数列的公差;
(2)哪一天可以实现盈利?
(3)若丢失了一天的销售数据,使得30天的平均利润变化每天98元,则丢失的数据为第几天的数据?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1,F2,M为C上位于第一象限的点,|MF1|=2,且MF1⊥y轴,MF2与椭圆C交于另一点N,若$\overrightarrow{M{F}_{2}}$=2$\overrightarrow{{F}_{2}N}$,则直线MN的斜率为(  )
A.-$\frac{\sqrt{5}}{2}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在直角梯形ABCD中,AB∥CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,$\overrightarrow{DQ}=λ\overrightarrow{DC}$,$\overrightarrow{CP}=(1-λ)\overrightarrow{CB}$,若集合M=$\{x|x=\overrightarrow{AP}•\overrightarrow{AQ}\}$,N=$\left\{{x\left|{x=\frac{{{a^2}+{b^2}+1}}{3(a-b)},a>b,ab=1}\right.}\right\}$.则M∩N=[$\frac{2\sqrt{3}}{3}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知lga和lgb分别是x2+x-3=0的两个根,则ab=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知变量x,y,满足:$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,则z=2x+y的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知复数z1=-$\sqrt{5}$i,z2=6-6i.
(1)分别将z1、z2化为极坐标形式;
(2)计算:$\frac{{z}_{1}}{{z}_{2}}$.

查看答案和解析>>

同步练习册答案