精英家教网 > 高中数学 > 题目详情
1.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=1+\sqrt{2}sinα}\end{array}\right.$(α为参数),以O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ(cosθ+sinθ)+1=0,求:
(Ⅰ)曲线C1的一般方程和C2的直角坐标方程;
(Ⅱ)曲线C1上的点到曲线C2的最远距离.

分析 (I)曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=1+\sqrt{2}sinα}\end{array}\right.$(α为参数),利用cos2α+sin2α=1即可化为普通方程.利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可把曲线C2的极坐标方程化为直角坐标方程.
(II)利用点到直线的距离公式求出:圆心C1(1,1)到直线的距离d.可得曲线C1上的点到曲线C2的最远距离=d+r.

解答 解:(I)曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=1+\sqrt{2}sinα}\end{array}\right.$(α为参数),消去参数α可得:(x-1)2+(y-1)2=2.
曲线C2的极坐标方程为ρ(cosθ+sinθ)+1=0,化为x+y+1=0.
(II)圆心C1(1,1)到直线的距离d=$\frac{3}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$.
∴曲线C1上的点到曲线C2的最远距离=d+r=$\frac{5\sqrt{2}}{2}$.

点评 本题考查了圆的参数方程化为普通方程、极坐标方程化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数y=(2x-3)3的导数是(  )
A.3(2x-3)B.6xC.6(2x-3)D.6(2x-3)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数f(x)=$\sqrt{\frac{x}{m}}$与函数g(x)=lnx的图象有且仅有一个交点,则实常数m的值为$\frac{{e}^{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知p:x2-8x-20≤0,q:(x+m)(x-2m)≤0(m>0),若q是p的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题p:“?x∈R,x2-2≥0“,则命题¬p为:?x∈R,x2-2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.定义在(0,+∞)上的函数f(x)对一切x,y>0满足f($\frac{x}{y}$)=f(x)-f(y),且当0<x<1,f(x)<0.
(1)求f(1);
(2)讨论该函数在(0,+∞)上的单调性;
(3)解不等式f(x+1)-f($\frac{1}{x-1}$)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在四面体ABCD中,点G1,G2,G3,G4分别为△ABC,△ACD,△ADB,△BCD的重心,点M在线段AG4上,且AM:MG4=2:1,求证:向量$\overrightarrow{{G}_{1}{G}_{2}}$,$\overrightarrow{{G}_{1}{G}_{3}}$,$\overrightarrow{{G}_{1}M}$共面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设全集U={(x,y)|x∈R,y∈R},M={(x,y)|$\frac{y-3}{x-2}$=1},P={(x,y)|y≠x+1},∁u(M∪P).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=${2}^{\frac{1}{1-x}}$+1og2(1+x)的定义域是(  )
A.(-∞,-1)B.(1,+∞)C.(-∞,+∞)D.(-1,1)∪(1,+∞)

查看答案和解析>>

同步练习册答案