精英家教网 > 高中数学 > 题目详情
9.已知p:x2-8x-20≤0,q:(x+m)(x-2m)≤0(m>0),若q是p的充分条件,求实数m的取值范围.

分析 分别求出关于p,q的不等式,根据q是p的充分条件得到不等式组,解出即可.

解答 解:由q:(x+m)(x-2m)≤0(m>0),得-m≤x≤2m,(m>0),
由p:x2-8x-20≤0,得-2≤x≤10,
又由q是p的充分条件,得
$\left\{\begin{array}{l}{m>0}\\{-m≥-2}\\{2m≤10}\end{array}\right.$,
解得:0<m≤2,
故m的取值范围为(0,2].

点评 本题考查了充分必要条件,考查不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c,若acosC+ccosA=bsinB,则△ABC的形状为直角三角形三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若(2x+1)(x-2)5=a0+a1x+…+a6x6,则a0+a1=-16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sin(2x+φ),其中φ为实数,若$f(x)≤|{f(\frac{π}{3})}|$对于任意x∈R恒成立,且$f(\frac{π}{2})>f(π)$,则$f(\frac{5π}{12})$的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.0C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C的对边分别为a,b,c,若b=2,B=$\frac{π}{4}$,sinA=$\frac{\sqrt{3}}{2}$,则a的值是(  )
A.$\sqrt{6}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式-x2-x+2≥0的解集为(  )
A.{x|-1≤x≤2}B.{x|x≥2或x≤1}C.{x|-2≤x≤1}D.{x|x≥1或x≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=1+\sqrt{2}sinα}\end{array}\right.$(α为参数),以O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ(cosθ+sinθ)+1=0,求:
(Ⅰ)曲线C1的一般方程和C2的直角坐标方程;
(Ⅱ)曲线C1上的点到曲线C2的最远距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知m=3a=5b,若$\frac{1}{a}$+$\frac{1}{b}$=1,则m=15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x>0,当x=$\frac{\sqrt{2}}{2}$时,x+$\frac{1}{2x}$的最小值是2.

查看答案和解析>>

同步练习册答案