精英家教网 > 高中数学 > 题目详情
4.f(x)=$\frac{{x}^{{n}^{2}}}{{x}^{3n}}$(n∈Z)是偶函数,且y=f(x)在(0,+∞)上是减函数,则n=1或2.

分析 从单调性入手,则指数小于零,确定出n的范围,然后再通过偶函数验证得到n值.

解答 解:∵y=f(x)在(0,+∞)上是减函数,
∴n2-3n<0,
∴0<n<3,
又∵是偶函数,
∴n=1或2.
故答案为:1或2.

点评 本题主要考查幂函数的单调性和奇偶性,单调性要充分利用好在第一象限内指数大于零为增函数,小于零为减函数,对称区间上的单调性用奇偶性来判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设复数z=$\frac{1+i}{1-i}$,则z$\overline{z}$=(  )
A.1+iB.1-iC.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知抛物线C:y2=4x与点M(0,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,则k=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设变量x、y满足约束条件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则目标函数z=x2+y2的最大值为(  )
A.9B.36C.81D.41

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设定义在区间[-m,m]上的函数f(x)=log2$\frac{1+nx}{1-2x}$是奇函数(n≠-2),则nm的范围为(1,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M={x|x2-3x<0},N={x|1≤x≤4},则M∩N=(  )
A.[1,3)B.(1,3)C.(0,3]D.(-∞,-5]∪[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足an=an+1-3,(n∈N*),a3=5.各项都为正数的等比数列{bn}中,b1=a2,b3=a4
(1)求数列{an}的通项公式和前10项和S10
(2)若m=b2b3b4b5b6b7,试求m的值及数列{bn}的前n项和Bn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=kx($\frac{1}{e}$≤x≤e2),与函数g(x)=($\frac{1}{e}$)${\;}^{\frac{x}{2}}}$,若f(x)与g(x)的图象上分别存在点M,N,使得MN关于直线y=x对称,则实数k的取值范围是(  )
A.[-$\frac{1}{e}$,e]B.[-$\frac{2}{e}$,2e]C.$(-\frac{2}{e},2e)$D.$[-\frac{3}{e},3e]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中真命题的个数是(  )
①若p∧q是假命题,则p,q都是假命题;
②命题“?x∈R,x3-x2+1≤0”的否定是“$?{x_0}∈R,{x_0}^3-{x_0}^2+1>0$”;
③若$p:x≤1\;,\;q:\frac{1}{x}<1$,则¬p是q的充分不必要条件.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案