精英家教网 > 高中数学 > 题目详情
1.由正实数组成的数列{an}满足:an2≤an-an+1,n=1,2…证明:对任意n∈N*,都有an<$\frac{1}{n}$.

分析 根据正项数列{an},以及an2≤an-an+1,可得0<an+1≤an-an2,解此不等式即可得到0<an<1,不难得出a1<1,a2<1,利用数学归纳法证明即可利用数学归纳法证明即可.

解答 解:an2≤an-an+1,得an+1≤an-an2
∵在数列{an}中an>0,
∴an+1>0,
∴an-an2>0,
∴0<an<1,
∴a2≤a1-a12=a1(1-a1)≤($\frac{{a}_{1}+1-{a}_{1}}{2}$)2=$\frac{1}{4}$<$\frac{1}{2}$
由此猜想:an<$\frac{1}{n}$(n≥2).下面用数学归纳法证明:
①当n=2时,显然成立;
②当n=k时(k≥2,k∈N)时,假设猜想正确,即ak<$\frac{1}{k}$
那么ak+1≤ak-ak2=-(ak-$\frac{1}{2}$)2+$\frac{1}{4}$≤-($\frac{1}{k}$-$\frac{1}{2}$)2+$\frac{1}{4}$=$\frac{1}{k}$-$\frac{1}{{k}^{2}}$=$\frac{k-1}{{k}^{2}}$<$\frac{k-1}{{k}^{2}-1}$<$\frac{1}{k+1}$
∴当n=k+1时,猜想也正确
综上所述,对于一切n∈N*,an<$\frac{1}{n}$.

点评 本题主要考查数列与不等式问题和数学归纳法,对探究性问题先归纳,再猜想,最后利用数学归纳法证明,数学归纳法的关键是递推环节,要符合假设的模型才能成立,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设集合M={a|a=$\right.\frac{x+y}{t}$$\frac{x+y}{t}$,2x+2y=2t,其中x,y,t,a均为整数},则集合M={0,1,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=log${\;}_{\frac{1}{3}}$(2-x)的定义域为(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=$\sqrt{4-|x-3|}$的定义域是[-1,7].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.${∫}_{1}^{3}$|4-2x|dx=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(3,-2),$\overrightarrow{b}$=(-2,1),$\overrightarrow{c}$=(4,-3),用$\overrightarrow{a}$,$\overrightarrow{b}$作为基底表示$\overrightarrow{c}$,则$\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若对于任意实数x,都有x4=a0+a1(x+2)+a2(x+2)2+a3(x+2)3+a4(x+2)4,则a0+a1+a2+a3+a4的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中 $\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AE}$,下列判断正确的是(  )
A.满足λ+μ=2的点P必为BC的中点B.满足λ+μ=1的点P有且只有一个
C.满足λ+μ=a(a>0)的点P最多有3个D.λ+μ的最大值为3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,已知Sn=$\frac{3}{2}$(an-1).
(1)求a1的值,并求数列{an}的通项公式;
(2)若数列{bn}为等差数列,且b3+b5=-8,2b1+b4=0,设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案