精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow{a}$=(3,-2),$\overrightarrow{b}$=(-2,1),$\overrightarrow{c}$=(4,-3),用$\overrightarrow{a}$,$\overrightarrow{b}$作为基底表示$\overrightarrow{c}$,则$\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow{b}$.

分析 根据平面向量的基本定理,设$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,列出方程组求出x、y的值即可.

解答 解:设$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,x、y∈R;
∴x(3,-2)+y(-2,1)=(4,-3),
即$\left\{\begin{array}{l}{3x-2y=4}\\{-2x+y=-3}\end{array}\right.$,
解得x=2,y=1;
∴$\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow{b}$.
故答案为:$\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow{b}$.

点评 本题考查了平面向量的基本定理与坐标运算的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.给出下列三个命题:
①“若x2+2x-3≠0,则x≠1”为假命题;
②若p∧q为假命题,则p,q均为假命题;
③命题p:?x∈R,2x>0,则?p:?x0∈R,2x0≤0.
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|x2≥x},N={y|y=3x+1,x∈R},则M∩N=(  )
A.{x|x>1}B.{x|x≥1}C.{x|x≤0或x>1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|1≤x<5},C={x|-a<x≤a+3},若C∩A=C,则a的取值范围为(  )
A.-$\frac{3}{2}$<a≤-1B.a≤-$\frac{3}{2}$C.a≤-1D.a>-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.由正实数组成的数列{an}满足:an2≤an-an+1,n=1,2…证明:对任意n∈N*,都有an<$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.当m=$\frac{1}{4}$时,二次方程x2+2mx+m-4=0的两根平方和取得最小(填“大”或“小”)值$\frac{31}{4}$(填数字)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解方程:
(1)3×|2x-1|-1=5;(2)|x-|2x+1||=3;(3)|x-2|+|x+5|=6;
(4)|x-5|+$\sqrt{(4-x)^{2}}$=1;(5)x|x|-3|x|+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知y=f(x)为定义在R上的单调递增函数,y=f′(x)是其导函数,若对任意x∈R的总有$\frac{f(x-1)}{f′(x-1)}$<x,则下列大小关系一定正确的是(  )
A.$\frac{f(e)}{e+1}$>$\frac{f(π)}{π+1}$B.$\frac{f(e)}{e+1}$<$\frac{f(π)}{π+1}$C.$\frac{f(e)}{e+2}$>$\frac{f(π)}{π+2}$D.$\frac{f(e)}{e+2}$<$\frac{f(π)}{π+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.tan$\frac{9π}{8}$=$\sqrt{2}$-1.

查看答案和解析>>

同步练习册答案