精英家教网 > 高中数学 > 题目详情
1.在二项式${(2+\sqrt{x}-\frac{2017}{{x}^{2017}})}^{12}$的展开式中,x5的系数为3168.(结果用数值表示)

分析 求出展开式通项,找出x5的项,求系数.

解答 解:二项式${(2+\sqrt{x}-\frac{2017}{{x}^{2017}})}^{12}$的展开式通项为:${T}_{r+1}={C}_{12}^{r}(2+\sqrt{x})^{12-r}(-\frac{2017}{{x}^{2017}})^{r}$,
令r=0,则${T}_{1}={C}_{12}^{1}(2+\sqrt{x})^{12}$,其展开式通项为${C}_{12}^{1}{C}_{12}^{k}{2}^{12-k}{x}^{\frac{k}{2}}$,
令$\frac{k}{2}$=5得到k=10,所以x5的系数为${C}_{12}^{1}{C}_{12}^{10}{2}^{2}$=3168;
故答案为:3168.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.甲、乙两位学生参加数学文化知识竞赛培训.在培训期间,他们参加的 5 次测试 成绩记录如下:甲:82    
82    79    95    87      乙:95    75    80    90    85现要从甲、乙两位同学中选派一人参加正式比赛,从统计学的角度考虑,你认为选派甲同学参加合适.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果a>b>0,那么下面一定成立的是(  )
A.a-b<0B.ac>bcC.$\frac{1}{a}$<$\frac{1}{b}$D.a3<b3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{|x|},}&{x≤\frac{1}{2}}\\{\sqrt{2}|lo{g}_{2}x|,}&{x>\frac{1}{2}}\end{array}\right.$,方程f(x)-c=0有四个根,则实数c的取值范围是(  )
A.[1,$\sqrt{2}$]B.($\frac{\sqrt{2}}{2}$,1)C.($\frac{\sqrt{2}}{2}$,$\sqrt{2}$)D.(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:?x∈R,ax2+2x+3>0.若命题p为假命题,则实数a的取值范围是(  )
A.{a|a<$\frac{1}{3}$}B.{a|0<a≤$\frac{1}{3}$}C.{a|a≤$\frac{1}{3}$}D.{a|a≥$\frac{1}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设实数x,y满足约束条件$\left\{\begin{array}{l}x-y≥-1\\ x+y≤4\\ y≥a\end{array}\right.$,目标函数z=3x-2y的最小值为-4,则z的最大值为17.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在区间[0,4]上随机取一个数x,则事件“$-1≤{log_{\frac{1}{2}}}({x+\frac{1}{2}})≤1$”发生的概率为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出下列几个命题:
①命题p:任意x∈R,都有cosx≤1,则?p:存在x0∈R,使得cosx0≤1;
②已知ξ~N(μ,δ2),若P(ξ>4)=P(ξ<2)成立,且P(ξ≤0)=0.2,则P(0<ξ<2)=0.6;
③空间任意一点O和三点A,B,C,则$\overrightarrow{OA}=3\overrightarrow{OB}=2\overrightarrow{OC}$是A,B,C三点共线的充分不必要条件;
④线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$对应的直线一定经过其样本数据点(x1,y1),(x2,y2),…,(xn,yn)中的一个.
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)=$|\begin{array}{l}{1}&{1}&{1}\\{x}&{-1}&{1}\\{{x}^{2}}&{2}&{1}\end{array}|$(x∈R),则方程f(x)=0的解集为{-1,1}.

查看答案和解析>>

同步练习册答案