精英家教网 > 高中数学 > 题目详情
5.设f(x)=$|\begin{array}{l}{1}&{1}&{1}\\{x}&{-1}&{1}\\{{x}^{2}}&{2}&{1}\end{array}|$(x∈R),则方程f(x)=0的解集为{-1,1}.

分析 此题要求方程的解集,主要还是化简方程左边的行列式得一元二次方程求出x即可.

解答 解:因为f(x)=$|\begin{array}{l}{1}&{1}&{1}\\{x}&{-1}&{1}\\{{x}^{2}}&{2}&{1}\end{array}|$得到方程f(x)=0,
即$|\begin{array}{l}{1}&{1}&{1}\\{x}&{-1}&{1}\\{{x}^{2}}&{2}&{1}\end{array}|$=0
化简得:1×(-1)×1+1×1×x2+x×1×1-x2×(-1)×1-x×1×1-1×1×1=0
化简得:x2=1
解得:x1=1,x2=-1.
故答案为:{-1,1}.

点评 此题考查学生化简行列式的能力,解方程的能力

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在二项式${(2+\sqrt{x}-\frac{2017}{{x}^{2017}})}^{12}$的展开式中,x5的系数为3168.(结果用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{(2-[x]•|x-1|,(0≤x<2)}\\{1,(x=2)}\end{array}\right.$,其中[x]表示不超过x的最大整数.设n∈N*,定义函数fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x))(n≥2),则下列说法正确的有(  )个
①$y=\sqrt{x-f(x)}$的定义域为$[{\frac{2}{3},2}]$;
②设A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;
③${f_{2016}}({\frac{8}{9}})+{f_{2017}}({\frac{8}{9}})=\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},则M中至少含有8个元素.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式组$\left\{\begin{array}{l}y-1≥0\\ x-y+2≥0\\ x+4y-8≤0\end{array}\right.$表示的平面区域为Ω,直线x=a(a>1)将Ω分成面积之比为1:4的两部分,则目标函数z=ax+y的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.当a=16时,如图的算法输出的结果是(  )
A.9B.32C.10D.256

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设点P是圆C:(x+4)2+(y-2)2=5上的动点,则点P到原点距离的最大值为(  )
A.$\sqrt{5}$B.$2\sqrt{5}$C.$3\sqrt{5}$D.$4\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有一段“三段论”推理是这样的“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点;因为函数f(x)=x3在x=0处的导数值f'(x0)=0,所以x=0是函数f(x)=x3的极值点.”以上推理中:(1)大前提错误;(2)小前提错误;(3)推理形式正确;(4)结论正确.你认为正确的序号是(  )
A.(1)(3)B.(2)(3)C.(1)(4)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在路边安装路灯,灯柱AB与地面垂直,灯杆BC与灯柱AB所在平面与路面垂直,且∠ABC=120°,路灯采用锥形灯罩,射出的光线如图中的阴影部分所示,∠ACD=60°,AD=24米,∠ACB=θ(30°≤θ≤45°).
(Ⅰ)求灯柱AB的高度(用ξ表示);
(Ⅱ)求灯柱AB与灯杆BC长度之和的最小值,及取最小值时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式x2-|x|-2<0(x∈R)的解集是(  )
A.{x|x<-1或x>1}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|-2<x<2}

查看答案和解析>>

同步练习册答案