精英家教网 > 高中数学 > 题目详情
14.在路边安装路灯,灯柱AB与地面垂直,灯杆BC与灯柱AB所在平面与路面垂直,且∠ABC=120°,路灯采用锥形灯罩,射出的光线如图中的阴影部分所示,∠ACD=60°,AD=24米,∠ACB=θ(30°≤θ≤45°).
(Ⅰ)求灯柱AB的高度(用ξ表示);
(Ⅱ)求灯柱AB与灯杆BC长度之和的最小值,及取最小值时θ的值.

分析 (Ⅰ)由条件求得∠BAC=60°-θ,∠CAD=30°+θ,∠ADC=90°-θ.△ACD中,利用正弦定理求得AC的值,在△ABC中,由正弦定理求得灯柱AB的高度的值.
(Ⅱ)在△ABC中,由正弦定理求得BC的值,再根据 S=AB+BC=8$\sqrt{3}$+16sin(2θ+60°).根据30°≤θ≤45°,利用正弦函数的定义域和值域求得S的最小值.

解答 解:(Ⅰ)∵∠ABC=120°,∠ACB=θ,∴∠BAC=60°-θ,
∵∠BAD=90°,∴∠CAD=30°+θ,
∵∠ACD=60°,∴∠ADC=90°-θ,
在△ACD中,∵$\frac{AD}{sin∠ACD}=\frac{AC}{sin∠ADC}$,∴$AC=\frac{24cosθ}{{sin{{60}°}}}=16\sqrt{3}cosθ$,
在△ABC中,∵$\frac{AB}{sin∠ACB}=\frac{AC}{sinB}$,∴$AB=\frac{ACsinθ}{{sin{{120}°}}}=\frac{{16\sqrt{3}sinθcosθ}}{{sin{{120}°}}}=16sin2θ$,
即灯柱AB的高度为16sin2θ米.…(6分)
(Ⅱ)在△ABC中,∵$\frac{BC}{sin∠BAC}=\frac{AC}{sinB}$,
∴$BC=\frac{{ACsin({{60}°}-θ)}}{{sin{{120}°}}}=32cosθsin({60°}-θ)=8\sqrt{3}+8\sqrt{3}cos2θ-8sin2θ$,
即$AB+BC=8\sqrt{3}+8\sqrt{3}cos2θ+8sin2θ=8\sqrt{3}+16sin(2θ+{60°})$,
∵30°≤θ≤45°,∴120°≤2θ+60°≤150°,
∴当θ=45°时,灯柱AB与灯杆BC长度之和的最小值为$8\sqrt{3}+8$米.…(12分)

点评 本题主要考查正弦定理的应用,三角形的内角和公式,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.给出下列几个命题:
①命题p:任意x∈R,都有cosx≤1,则?p:存在x0∈R,使得cosx0≤1;
②已知ξ~N(μ,δ2),若P(ξ>4)=P(ξ<2)成立,且P(ξ≤0)=0.2,则P(0<ξ<2)=0.6;
③空间任意一点O和三点A,B,C,则$\overrightarrow{OA}=3\overrightarrow{OB}=2\overrightarrow{OC}$是A,B,C三点共线的充分不必要条件;
④线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$对应的直线一定经过其样本数据点(x1,y1),(x2,y2),…,(xn,yn)中的一个.
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)=$|\begin{array}{l}{1}&{1}&{1}\\{x}&{-1}&{1}\\{{x}^{2}}&{2}&{1}\end{array}|$(x∈R),则方程f(x)=0的解集为{-1,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题P:x2-2x-3≥0,命题Q:|1-$\frac{x}{2}$|<1.若P是真命题且Q是假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.乓球台面被网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A、B,乙被划分为两个不相交的区域C、D.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,队员小明回球的落点在C上的概率为$\frac{1}{2}$,在D上的概率为$\frac{1}{3}$;对落点在B上的来球,小明回球的落点在C上的概率为$\frac{1}{5}$,在D上的概率为$\frac{3}{5}$.假设共有两次来球且落在A、B上各一次,小明的两次回球互不影响.求:
(1)小明两次回球的落点中恰有一次的落点在乙上的概率;
(2)两次回球结束后,小明得分之和ξ的分布列与均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)$f(x)=sin(2x+\frac{π}{6})+\frac{1}{2}$求f(x)的单调递增区间.
(2)已知函数y=a-bcos(x-$\frac{π}{3}$),(b>0)在0≤x≤π的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,求2a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点P为直线y=$\frac{3}{4}$x上任一点,F1(-5,0),F2(5,0),则||PF1|-|PF2||的取值范围为[0,8.5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC中,$tanA=\frac{3}{4}$,则cos2A等于(  )
A.$\frac{18}{25}$B.$-\frac{18}{25}$C.$-\frac{7}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在极坐标系中,△OAB的三边所在直线方程分别为$OA:θ=0,OB:θ=\frac{π}{2},AB:ρcos(θ-\frac{π}{3})=\sqrt{3}$,P为△OAB外接圆C上任一点,以极点O为原点,极轴为x轴的正半轴,取相同的单位长度建立直角坐标系.
(1)在直角坐标系中,求点A、B的坐标和圆C的参数方程;
(2)求|PO|2+|PA|2+|PB|2的最大值和最小值.

查看答案和解析>>

同步练习册答案