精英家教网 > 高中数学 > 题目详情
6.点P为直线y=$\frac{3}{4}$x上任一点,F1(-5,0),F2(5,0),则||PF1|-|PF2||的取值范围为[0,8.5].

分析 由题意,P在原点时,||PF1|-|PF2||=0,求出F2(5,0)关于直线y=$\frac{3}{4}$x对称点的坐标,可得||PF1|-|PF2||的最大值,即可求出||PF1|-|PF2||的取值范围.

解答 解:由题意,P在原点时,||PF1|-|PF2||=0,
F2(5,0)关于直线y=$\frac{3}{4}$x对称点的坐标为F(a,b),则$\left\{\begin{array}{l}{\frac{b}{a-5}•\frac{3}{4}=-1}\\{\frac{b}{2}=\frac{3}{4}•\frac{a+5}{2}}\end{array}\right.$,∴a=$\frac{9}{5}$,b=$\frac{51}{10}$,
∴||PF1|-|PF2||的最大值为$\sqrt{(\frac{9}{5}+5)^{2}+(\frac{51}{10})^{2}}$=8.5,
∴||PF1|-|PF2||的取值范围为[0,8.5].
故答案为:[0,8.5].

点评 本题考查||PF1|-|PF2||的取值范围,考查对称性的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{(2-[x]•|x-1|,(0≤x<2)}\\{1,(x=2)}\end{array}\right.$,其中[x]表示不超过x的最大整数.设n∈N*,定义函数fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x))(n≥2),则下列说法正确的有(  )个
①$y=\sqrt{x-f(x)}$的定义域为$[{\frac{2}{3},2}]$;
②设A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;
③${f_{2016}}({\frac{8}{9}})+{f_{2017}}({\frac{8}{9}})=\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},则M中至少含有8个元素.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有一段“三段论”推理是这样的“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点;因为函数f(x)=x3在x=0处的导数值f'(x0)=0,所以x=0是函数f(x)=x3的极值点.”以上推理中:(1)大前提错误;(2)小前提错误;(3)推理形式正确;(4)结论正确.你认为正确的序号是(  )
A.(1)(3)B.(2)(3)C.(1)(4)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在路边安装路灯,灯柱AB与地面垂直,灯杆BC与灯柱AB所在平面与路面垂直,且∠ABC=120°,路灯采用锥形灯罩,射出的光线如图中的阴影部分所示,∠ACD=60°,AD=24米,∠ACB=θ(30°≤θ≤45°).
(Ⅰ)求灯柱AB的高度(用ξ表示);
(Ⅱ)求灯柱AB与灯杆BC长度之和的最小值,及取最小值时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(2ax2+bx+1)•e-x(e为自然对数的底数).
(1)若$a=\frac{1}{2}$,b≥0,求函数f(x)的单调区间;
(2)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=x2-2x+1,不等式f(x2-3)>f(2x)的解集用区间表示为(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.△ABC中,D为AB的中点,点F在线段CD(不含端点)上,且满足$\overrightarrow{AF}=x\overrightarrow{AB}+y\overrightarrow{AC}$(x,y∈R),则$\frac{1}{x}+\frac{2}{y}$的最小值为(  )
A.$3+2\sqrt{2}$B.$2+2\sqrt{2}$C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式x2-|x|-2<0(x∈R)的解集是(  )
A.{x|x<-1或x>1}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|-2<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A为抛物线C:x2=4y上的动点(不含原点),过点A的切线交x轴于点B,设抛物线C的焦点为F,则∠ABF一定是直角.(填:钝角、锐角、直角)

查看答案和解析>>

同步练习册答案