分析 求导数,利用点斜式方程求得过A的切线方程,解出B的坐标,求出$\overrightarrow{BA}$,$\overrightarrow{BF}$的坐标,可得计算$\overrightarrow{BA}$•$\overrightarrow{BF}$=0即可得出结论.
解答
解:由x2=4y可得y=$\frac{1}{4}$x2,求导y′=$\frac{1}{2}$x,
设A(x0,$\frac{{x}_{0}^{2}}{4}$),则
过A的切线方程为y-$\frac{{x}_{0}^{2}}{4}$=$\frac{1}{2}$x0(x-x0),
令y=0,可得x=$\frac{1}{2}$x0,则B($\frac{1}{2}$x0,0),
∵F(0,1),
∴$\overrightarrow{BA}$=($\frac{1}{2}$x0,$\frac{{x}_{0}^{2}}{4}$),$\overrightarrow{BF}$=(-$\frac{1}{2}$x0,1),
∴$\overrightarrow{BA}$•$\overrightarrow{BF}$=0,
∴∠ABF=90°,
∠ABF一定是直角,
故答案为:直角.
点评 本题考查直线与抛物线的位置关系,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2017 | B. | 1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | $2\sqrt{5}$ | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com