分析 (1)根据正弦函数的性质即可求出.
(2)由条件利用余弦函数的值域可得a+$\frac{1}{2}$b=$\frac{3}{2}$,a-b=-$\frac{1}{2}$,由此求得a,b的值.
解答 解:(1)当$2kπ-\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{π}{2}(k∈Z)$时,f(x)的单调递增,
故函数f(x)的单调递增区间是$[{kπ-\frac{π}{3},kπ+\frac{π}{6}}]({k∈Z})$.
(2)∵0≤x≤π,
∴-$\frac{π}{3}$≤x-$\frac{π}{3}$≤$\frac{2π}{3}$,
∴-$\frac{1}{2}$≤cos(x-$\frac{π}{3}$)≤1,
∵b>0并且在0≤x≤π的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,
∴$\left\{\begin{array}{l}{a-b=-\frac{1}{2}}\\{a+\frac{1}{2}b=\frac{3}{2}}\end{array}\right.$,
解得a=$\frac{5}{6}$,b=$\frac{4}{3}$,
∴2a+b=3.
点评 本题主要考查正弦函数单调性以及余弦函数的图象和性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $2\sqrt{5}$ | C. | $3\sqrt{5}$ | D. | $4\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | -$\frac{3}{2}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1.2 | B. | 0.6 | C. | 0.4 | D. | -0.4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com