分析 利用两个向量的数量积的定义求得$\overrightarrow{a}•\overrightarrow{b}$的值,结合|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{{(\overrightarrow{a}+2\overrightarrow{b})}^{2}}$,计算求得结果.
解答 解:∵向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,$\overrightarrow{a}$=(3,0),|$\overrightarrow{b}$|=2,∴|$\overrightarrow{a}$|=3|,∴$\overrightarrow{a}•\overrightarrow{b}$=3•2•cos$\frac{2π}{3}$=-3,
则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{{(\overrightarrow{a}+2\overrightarrow{b})}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+{4\overrightarrow{b}}^{2}}$=$\sqrt{9-12+16}$=$\sqrt{13}$,
故答案为:$\sqrt{13}$.
点评 本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 即不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -7或3 | B. | -2或8 | C. | -4或4 | D. | 0或6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{a^2}{b^2}$ | B. | $\frac{b^2}{a^2}$ | C. | $\frac{b^2}{c^2}$ | D. | 以上答案都不对 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com