精英家教网 > 高中数学 > 题目详情
8.已知点M(2,3)、N(3,4),P为x轴上的动点,则|PM|+|PN|的最小值为$5\sqrt{2}$.

分析 点M关于x轴的对称点Q(2,-3),可得|PM|+|PN|的最小值为|NQ|.

解答 解:点M关于x轴的对称点Q(2,-3).
则|PM|+|PN|的最小值为|NQ|=$\sqrt{(3-2)^{2}+(4+3)^{2}}$=5$\sqrt{2}$.
故答案为:5$\sqrt{2}$.

点评 本题考查了点的对称性质、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设实数x,y满足约束条件$\left\{{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}}\right.$,则目标函数z=y-$\frac{1}{2}x$的最小值为(  )
A.-1B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,P为双曲线右支上一点,PF1与以原点为圆心a为半径的圆相切,切点为M,若$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{O{F}_{1}}+\overrightarrow{OP}$),那么该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{10}}{2}$D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=ln(mex+ne-x)+m为偶函数,且f(0)=2+ln4,则m=2,不等式f(x)≤f(m+n)的解集为{x|-4≤x≤4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|=$\frac{n}{2}$,n∈Z},B={x|x=n+$\frac{1}{2}$,n∈Z},则下列图形能表示A与B关系的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(-2sinx,$\sqrt{3}$(cosx+sinx)),$\overrightarrow{b}$=(cosx,cosx-sinx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$(x∈R).
(Ⅰ)求f(x)在[-$\frac{π}{2}$,0]时的值域;
(Ⅱ)求f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求经过两条直线l1:x+y-4=0和l2:x-y+2=0的交点,
(1)且与直线2x-y-1=0平行的直线方程
(2)且与直线2x-y-1=0垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=2x2+x-1,x∈[-5,5],在定义域内任取一点x0,使f(x0)≤0的概率是(  )
A.$\frac{3}{20}$B.$\frac{2}{3}$C.$\frac{3}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知sin($\frac{π}{5}$-x)=$\frac{3}{5}$,则cos($\frac{7}{10}$π-x)=$-\frac{3}{5}$..

查看答案和解析>>

同步练习册答案