| A. | -1 | B. | -2 | C. | $\frac{1}{2}$ | D. | 2 |
分析 由约束条件证出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}}\right.$,作出可行域如图,![]()
联立$\left\{\begin{array}{l}{3x+y-6=0}\\{x-y-2=0}\end{array}\right.$,得C(2,0),
由z=y-$\frac{1}{2}$x得,y=$\frac{1}{2}$x+z,
由图可知,当直线y=$\frac{1}{2}$x+z过点C(2,0)时,直线在y轴上的截距最小,z有最小值为0-$\frac{1}{2}$×2=-1.
故选:A.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{10}}}{10}$ | B. | $-\frac{{3\sqrt{10}}}{10}$ | C. | $\frac{3}{5}$ | D. | $-\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com