精英家教网 > 高中数学 > 题目详情
3.(1)证明不等式ex≥x+1
(2)若存在x∈(0,+∞),使不等式$\frac{2x-m}{{e}^{x}-x}$>x成立,求m的取值范围
(3)设P,Q分别是函数y=lnx与y=ex图象上的动点,试证明|PQ|$≥\sqrt{2}$.

分析 (1)构造函数f(x)=ex-x-1,x>0,利用导数判断函数的单调性,求得f(x)最小值即得,f(x)>f(0)=0,不等式即可得证,
(2)先判断ex-x>1,则不等式$\frac{2x-m}{{e}^{x}-x}$>x成立等价于m<-x(ex-x-2),令h(x)=-x(ex-x-2)(x>0),利用导数法可求得h(x)max,从而可得m的取值范围.
(3)函数y=lnx与y=ex图象关于y=x对称,分别求出过点P,Q的切点,即可求出最小距离.

解答 证明:(1)令f(x)=ex-x-1,x>0,
则f′(x)=ex-1>0,∴f(x)在(0,+∞)上单调递增.
∴对任意x∈(0,+∞),有f(x)>f(0),
而f(0)=e0-0-1=0,∴f(x)>0,
即ex>x+1.
(2):设g(x)=ex-x
∴g′(x)=ex-1,
当x>0时,g′(x)>0,g(x)=ex-x在区间(0,+∞)上单调递增;
即g(x)>g(0)=1.
∴ex-x>1,
∴$\frac{2x-m}{{e}^{x}-x}$>x?2x-m>x(ex-x),
∴m<-x(ex-x-2),
令h(x)=-x(ex-x-2)(x>0),
则h′(x)=-(ex-x-2)-x(ex-1)=(x+1)(2-ex),
当0<x<ln2时,h′(x)>0;当x>ln2时,h′(x)<0;
∴当x=ln2时,h(x)取得极大值,也是最大值,为h(ln2)=-ln2(eln2-ln2-2)=ln22.
∴m<ln22.
(3)函数y=lnx与y=ex图象关于y=x对称,
∴y′=$\frac{1}{x}$与y′=ex
分别设切点为(xP,yP),(xQ,yQ),
∴$\frac{1}{{x}_{P}}$=1,${e}^{{x}_{Q}}$=1,
∴xP=1,xQ=0,
∴yP=0,yQ=1,
∴|PQ|≥$\sqrt{{1}^{2}+{1}^{2}}$=2.

点评 本题考查利用导数求闭区间上函数的最值,考查导数的综合应用,考查等价转化思想与运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列命题中正确命题的个数是(  )
(1)命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”;
(2)在回归直线$\widehat{y}$=1+2x中,x增加1个单位时,y一定减少2个单位;
(3)命题p:?x0∈R,使得x02+x0+1<0,则¬p:?x∈R,均有x2+x+1≥0;
(4)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=P0,则P(-1<ξ<0)=$\frac{1}{2}$-P0
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=-$\frac{1}{3}$x3+x2+3x+1,以下关于此函数的说法正确的是(  )
A.在x=1处取得极小值B.在x=-1处取得极大值
C.在x=3处取得极小值D.在x=3处取得极大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.画出下列函数在长度为一个周期的闭区间上的简图:
(1)y=4sin$\frac{1}{3}x$;
(2)y=$\frac{1}{2}cos3x$;
(3)y=3sin(2x-$\frac{π}{4}$);
(4)y=$\frac{5}{2}$cos($\frac{1}{2}x$+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设实数x,y满足约束条件$\left\{{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}}\right.$,则目标函数z=y-$\frac{1}{2}x$的最小值为(  )
A.-1B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题p:?x0>0,x02-2x0-3=0,则命题¬p是(  )
A.?x0≤0,x02-2x0-3=0B.?x0>0,x02-2x0-3=0
C.?x0≤0,x02-2x0-3≠0D.?x0>0,x02-2x0-3≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=alnx+$\frac{2{a}^{2}}{x}$+x,a≠0
(1)讨论函数f(x)的单调性;
(2)当a∈(-∞,0)时,记函数f(x)的最小值为g(a),求证:g(a)≤$\frac{1}{2}$e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.三角形ABC中,BC=4,且sinAcotB+cosA=$\sqrt{3}$,则三角形ABC面积最大值为4$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(-2sinx,$\sqrt{3}$(cosx+sinx)),$\overrightarrow{b}$=(cosx,cosx-sinx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$(x∈R).
(Ⅰ)求f(x)在[-$\frac{π}{2}$,0]时的值域;
(Ⅱ)求f(x)的递增区间.

查看答案和解析>>

同步练习册答案