【题目】已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
(1)求A∩B,A∪B;
(2)如果A∩C≠,求a的取值范围.
【答案】
(1)解:全集U=R,集合A={x|1<x≤8},B={x|2<x<9},
∴A∩B={x|2<x≤8},A∪B={x|1<x<9}
(2)解:∵集合A={x|1<x≤8},C={x|x≥a},
A∩C≠,
∴a≤8,
∴a的取值范围为(﹣∞,8]
【解析】(1)利用交集、并集的定义能求出结果.(2)利用交集的性质结合不等式的性质能求出a的取值范围.
【考点精析】解答此题的关键在于理解集合的并集运算的相关知识,掌握并集的性质:(1)A
A∪B,B
A∪B,A∪A=A,A∪
=A,A∪B=B∪A;(2)若A∪B=B,则A
B,反之也成立,以及对集合的交集运算的理解,了解交集的性质:(1)A∩B
A,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,则A
B,反之也成立.
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2﹣2x﹣8≤0},B={x|
<0},U=R.
(1)求A∪B;
(2)求(UA)∩B;
(3)如果C={x|x﹣a>0},且A∩C≠,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)的解析式满足
.
(1)求函数f(x)的解析式;
(2)当a=1时,试判断函数f(x)在区间(0,+∞)上的单调性,并加以证明;
(3)当a=1时,记函数
,求函数g(x)在区间
上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在x=1处的切线与直线
平行。
(Ⅰ)求a的值并讨论函数y=f(x)在
上的单调性。
(Ⅱ)若函数
(
为常数)有两个零点
,
(1)求m的取值范围;
(2)求证:
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),以原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为![]()
(Ⅰ)求曲线
的直角坐标方程,并指出其表示何种曲线;
(Ⅱ)设直线
与曲线
交于
两点,若点
的直角坐标为
,
试求当
时,
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
是过点
,倾斜角为
的直线,以直角坐标系
的原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程是
.
(1)求曲线
的普通方程和曲线
的一个参数方程;
(2)曲线
与曲线
相交于
两点,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com