精英家教网 > 高中数学 > 题目详情

【题目】如图,五面体中,四边形是菱形, 是边长为2的正三角形,

(1)证明:

(2)若在平面内的正投影为,求点到平面的距离.

【答案】(1)见解析(2)

【解析】试题分析:(1)取的中点,连,得到,进而得出,利用线面垂直的判定定理,证得平面,即得到

(2)取的中点,连结,由(1)证得平面,所以点在平面内的正投影,设点到平面的距离为,在中,求解面积,在中,得,利用,即可得到结论.

试题解析:(1)证明:如图,取的中点,连

因为是边长为的正三角形,所以

又四边形是菱形, ,所以是正三角形

所以

,所以平面

所以

(2)取的中点,连结

由(1)知,所以

平面,所以平面⊥平面

而平面⊥平面,平面与平面的交线为

所以平面,即点在平面内的正投影

设点到平面的距离为,则点到平面距离为

因为在中, ,得

中, ,得

所以由

解得 ,所以到平面的距离

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示, 是边长为3的正方形, 平面与平面所成角为.

(Ⅰ)求证: 平面

(Ⅱ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知g(x)=﹣x2﹣3,f(x)是二次函数,f(x)+g(x)是奇函数,且当x∈[﹣1,2]时,f(x)的最小值为1,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=e|x|+|x|,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为,顶点为,且

(1)求椭圆的方程;

(2)是椭圆上除顶点外的任意点,直线轴于点,直线于点.设的斜率为 的斜率为,试问是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中a≠0,q:实数x满足.

(I)若a=1,且p∧q为真,求实数x的取值范围.

(II)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数t满足f(0)=f(2)=2,f(1)=1.
(1)求函数f(x)的解析式;
(2)当x∈[﹣1,2]时,求y=f(x)的值域;
(3)设h(x)=f(x)﹣mx在[1,3]上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
(1)求A∩B,A∪B;
(2)如果A∩C≠,求a的取值范围.

查看答案和解析>>

同步练习册答案