精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{6},0≤x≤2}\\{2f(x-2),x>2}\end{array}\right.$,则f(2017)等于(  )
A.0B.$\frac{1}{2}$C.21007D.21008

分析 根据已知中函数f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{6},0≤x≤2}\\{2f(x-2),x>2}\end{array}\right.$,将x=2017代入可得答案.

解答 解:$f(2017)=f(1008×2+1)={2^{1008}}f(1)={2^{1008}}×sin\frac{π}{6}={2^{1007}}$.
故选:C

点评 本题考查的知识点是分段函数的应用,函数求值,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知直线x=-2交椭圆$\frac{x^2}{25}+\frac{y^2}{21}=1$于A、B两点,椭圆的右焦点为F点,则△ABF的周长为20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.知函数f(x)=cos2ωx-sin2ωx+2$\sqrt{3}$cosωxsinωx+t(ω>0),若f(x)图象上有相邻两个对称轴间的距离为$\frac{3π}{2}$,且当x∈[0,π]时,函数f(x)的最小值为0.
(1)求函数f(x)的表达式;
(2)在△ABC中,若f(B)=1,且2sin2C=cosC+cos(A-B),求∠B与sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是某几何体的三视图,其正视图,侧视图均为直径为2的半圆,俯视图是直径为2的圆,则该几何体的表面积为(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,以A、B、C、D、E为顶点的六面体中,△ABC和△ABD均为等边三角形,且平面ABC⊥平面ABD,EC⊥平面ABC,EC=$\sqrt{3}$,AB=2.
(Ⅰ)求证:DE∥平面ABC;
(Ⅱ)求此六面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)对定义域内的任意x1,x2,当f(x1)=f(x2)时,总有x1=x2,则称函数f(x)为单纯函数,例如函数f(x)=x是单纯函数,但函数f(x)=x2不是单纯函数,下列命题:
①函数$f(x)=\left\{\begin{array}{l}{log_2}x,x≥2\\ x-1,x<2\end{array}\right.$是单纯函数;
②当a>-2时,函数$f(x)=\frac{{{x^2}+ax+1}}{x}$在(0,+∞)上是单纯函数;
③若函数f(x)为其定义域内的单纯函数,x1≠x2,则f(x1)≠f(x2);
④若函f(x)数是单纯函数且在其定义域内可导,则在其定义域内一定存在x0使其导数f'(x0)=0.
其中正确的命题为①③.(填上所有正确的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若a1=1,对任意的n∈N*,都有an>0,且nan+12-(2n-1)an+1an-2an2=0设M(x)表示整数x的个位数字,则M(a2017)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|x-2|+2x-3,记f(x)≤-1的解集为M.
(Ⅰ)求M;
(Ⅱ)当x∈M时,证明:x[f(x)]2-x2f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2-2x<0},B={y|y=|x|+1,x∈R},则A∩∁RB=(  )
A.(0,2)B.[1,2)C.(0,1]D.(0,1)

查看答案和解析>>

同步练习册答案