精英家教网 > 高中数学 > 题目详情

【题目】设P、Q为两个非空集合,定义集合P+Q={m+n| m∈P,n∈Q},若P={0,2,5}, Q={1,2,6},则P+Q中元素的个数为

A. 9 B. 8 C. 7 D. 6

【答案】B

【解析】P+Q共8个元素,选B.

点睛:求元素(个数)的方法,高考中,常利用集合元素的互异性确定集合中的元素,一般给定一个新定义集合,如“已知集合AB,求集合C={z|zx*yxAyB}(或集合C的元素个数),其中‘*’表示题目设定的某一种运算”.具体的解决方法:根据题目规定的运算“*”,一一列举xy的可能取值(应用列举法和分类讨论思想),从而得出z的所有可能取值,然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acos θ(a>0),过点P(-2,-4)的直线l: (t为参数)与曲线C相交于M,N两点.

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)若|PM|,|MN|,|PN|成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 平面 ,点的中点,点在棱上移动.

(1)当点的中点时,试判断与平面的位置关系,并说明理由;

(2)求证:无论点的何处,都有

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,BC边上的中线AD长为3,且BD=2,sinB=

(Ⅰ)求sin∠BAD的值;

(Ⅱ)求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a是实数,函数f(x)= (x-a).

(1)求函数f(x)的单调区间;

(2)设g(a)为f(x)在区间[0,2]上的最小值.

①写出g(a)的表达式;

②求a的取值范围,使得-6≤g(a)≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在实数a,使得函数y=sin2x+acosx+a-在闭区间[0,]上的最大值是1?若存在,则求出对应的a的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )

平均数≤3;标准差S≤2;平均数≤3且标准差S≤2;平均数≤3且极差小于或等于2;众数等于1且极差小于或等于1.

A.①② B.③④

C.③④⑤ D.④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知底角为45的等腰梯形ABCD,底边BC长为7cm,腰长为,当一条垂直于底边BC

(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x

(1)试写出直线l左边部分的面积f(x)与x的函数.

(2)已知A={x|f(x)<4},B={x|a2<x<a+2},若AB=B,求a的取值范围。.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段: ,…后得到如下频率分布直方图.

(1)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分、众数、中位数;(小数点后保留一位有效数字)

(2)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则各分数段抽取的人数分别是多少?

查看答案和解析>>

同步练习册答案