精英家教网 > 高中数学 > 题目详情
5.设a=logπ3,b=20.3,c=log2$\frac{1}{3}$,则a,b,c的大小关系为(  )
A.a>b>cB.c>a>bC.b>a>cD.a>c>b

分析 利用指数函数与对数函数的单调性即可得到.

解答 解:∵0<a=logπ3<1,b=20.3>1,c=log2$\frac{1}{3}$<0,
∴c<a<b.
故选:C.

点评 本题考查了指数函数与对数函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合A={y|y=x2+2x-3},$B=\left\{{\left.y\right|y=x+\frac{1}{x},x>0}\right\}$,则有(  )
A.A⊆BB.B⊆AC.A=BD.A∩B=φ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设等比数列{an}的公比q=2,前n项和为Sn,则$\frac{S_4}{{{a_1}+{a_3}}}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在等腰梯形ABCD中,AB∥CD,延长AB到点E,使∠BEC=∠CAD.若AC=$\sqrt{2}$,CD=CE=1,则BC=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若C${\;}_{n}^{2}$A${\;}_{2}^{2}$=42,则$\frac{n!}{3!(n-3)!}$=35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)满足对一切x1,x2∈R都有f(x1+x2)=f(x1)+f(x2)-4,且f(2)=0,当x>2时有f(x)<0.
(1)求f(-2)的值;
(2)判断并证明函数f(x)在R上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l1:(a+1)x+y-2a+1=0,l2:2x+ay-1=0,a∈R,
(1)若l1与l2平行,求a的值;
(2)l1过定点A,l2过定点B,求A,B的坐标,并求过A,B两点的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=$\frac{1}{3}{x}^{3}$-ax,g(x)=bx2+2b-1.
(Ⅰ)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
(Ⅱ)当a=1-2b且a>0时,若函数f(x)+g(x)在区间(-2,0)内恰有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,侧面PAB⊥底面ABCD,侧面PAB是边长为3的等边三角形,底面ABCD是正方形,M是侧棱PB上的点,N是底面对角线AC上的点,且PM=2MB,AN=2NC.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)求证:MN∥平面PAD;
(Ⅲ)求点N到平面PAD的距离.

查看答案和解析>>

同步练习册答案