精英家教网 > 高中数学 > 题目详情
5.在△ABC中,角A、B、C的对边分别是a、b、c,$\frac{asinA+bsinB-csinC}{sinBsinC}$=$\frac{2\sqrt{3}}{3}$a,a=2$\sqrt{3}$,若b∈[1,3],则c的最小值为(  )
A.2B.3C.2$\sqrt{2}$D.2$\sqrt{3}$

分析 利用正弦定理,余弦定理化简已知得3cosC=$\sqrt{3}$sinC,可求cosC=$\frac{1}{2}$,由余弦定理可得c${\;}^{2}={b}^{2}-2\sqrt{3}b+12$=(b-$\sqrt{3}$)2+9,由b∈[1,3],即可得解c的最小值.

解答 解:由$\frac{asinA+bsinB-csinC}{sinBsinC}$=$\frac{2\sqrt{3}}{3}$a,
可得:$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}=\frac{\sqrt{3}}{3}sinC$,
即:3cosC=$\sqrt{3}$sinC,可得:tanC=$\sqrt{3}$,
故:cosC=$\frac{1}{2}$,
所以:c${\;}^{2}={b}^{2}-2\sqrt{3}b+12$=(b-$\sqrt{3}$)2+9,
因为:b∈[1,3],
所以:当b=$\sqrt{3}$时,c取得最小值3.

点评 本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,二次函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知tanα=3,求sinα,cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设$\overrightarrow{m}$=(a,2),$\overrightarrow{n}$=(1,b-1),a>0,b>0,若$\overrightarrow{m}$,$\overrightarrow{n}$的夹角为$\frac{π}{2}$,则$\frac{1}{a}$+$\frac{2}{b}$的最小值是(  )
A.无法确定B.3C.$\frac{5}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a>0,b>0,$\frac{1}{a}$+$\frac{1}{b}$≤4,(a-b)2=16(ab)3,那么a+b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果$\frac{sinα-cosα}{3sinα+cosα}$=$\frac{1}{7}$,那么tanα=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若命题“?x∈R,使得sinxcosx>m”是真命题,则m的值可以是(  )
A.-$\frac{1}{3}$B.1C.$\frac{\sqrt{3}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30尺,该女子所需的天数至少为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组函数中,f(x)与g(x)是同一函数的是(  )
A.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1B.f(x)=x,g(x)=2${\;}^{lo{g}_{2}x}$
C.f(x)=x,g(x)=$\root{3}{{x}^{3}}$D.f(x)=x,g(x)=$\sqrt{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A、B、C所对的边分别为a、b、c,|$\overrightarrow{AB}$|=5,20a$\overrightarrow{BC}$+15b$\overrightarrow{CA}$+12c$\overrightarrow{AB}$=$\overrightarrow{0}$,$\overrightarrow{BP}$=2$\overrightarrow{PA}$,则$\overrightarrow{CP}$$•\overrightarrow{AB}$的值为(  )
A.$\frac{23}{3}$B.-$\frac{7}{2}$C.-$\frac{23}{3}$D.-8

查看答案和解析>>

同步练习册答案