精英家教网 > 高中数学 > 题目详情
17.已知tanα=3,求sinα,cosα.

分析 由tanα的值,利用同角三角函数间的基本关系求出cosα的值,进而求出sinα的值.

解答 解:∵tanα=3,
∴cosα=±$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=±$\frac{\sqrt{10}}{10}$,
∴当cosα=$\frac{\sqrt{10}}{10}$时,sinα=$\sqrt{1-\frac{1}{10}}$=$\frac{3\sqrt{10}}{10}$.
当cosα=-$\frac{\sqrt{10}}{10}$时,sinα=-$\sqrt{1-\frac{1}{10}}$=-$\frac{3\sqrt{10}}{10}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知a>0,b>0,ab=8,则log2a•log2(2b)的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),动点P从点P0(-1,2)开始沿着与向量$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$相同的方向做匀速直线运动,速度大小为|$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$|;另一动点Q从点Q0(-2,-1)开始沿着与向量3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$相同的方向做匀速直线运动,速度大小为|3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$|,设P、Q在t=0秒时刻分别在P0、Q0处.
(1)经过多长时间|PQ|最小?求出最小值;
(2)经过多长时间后$\overrightarrow{PQ}$⊥$\overrightarrow{{P}_{0}{Q}_{0}}$,求出t值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\frac{1}{2}$x2sinθ+$\sqrt{3}$xcosθ,其中θ∈R为参数,那么f′(1)的最大值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知θ是第二象限角,试判断tan(sinθ)•cot(cosθ)的符号;
(2)若sin(cosθ)•cos(sinθ)<0,则θ为第几象限角?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若符号[x]表示不大于实数x的最大整数,例[-2.1]=-3,[7]=7,若[|x-1|]=3,则x的取值范围是-3<x≤-2或4≤x<5,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.构造数组,规则如下:第一组是两个1,即(1,1),第二组是(1,2a,1),第三组是(1,a(1+2a),2a,a(2a+1),1)…,在每一组的相邻两个数组之间插入这两个数的和的a倍得到下一组,其中a∈(0,$\frac{1}{4}$),设第n组有an个数,且这an个数的和为Sn(n∈N*).
(1)求an和Sn
(2)求证:$\frac{{a}_{1}-1}{{S}_{1}}$+$\frac{{a}_{2}-1}{{S}_{2}}$+…+$\frac{{a}_{n}-1}{{S}_{n}}$≥$\frac{n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.经济学家在研究供求关系时,一般用纵轴表示产品价格(自变量),而用横轴来表示产品数量(因变量).下列供求曲线,哪条表示厂商希望的供应曲线,哪条表示客户希望的需求曲线?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,角A、B、C的对边分别是a、b、c,$\frac{asinA+bsinB-csinC}{sinBsinC}$=$\frac{2\sqrt{3}}{3}$a,a=2$\sqrt{3}$,若b∈[1,3],则c的最小值为(  )
A.2B.3C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案