精英家教网 > 高中数学 > 题目详情
函数f(x-1)=-2x+3,则f(x)=
 
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:用换元法,设x-1=t,求出x的表达式,再求出f(t),即得f(x).
解答: 解:∵f(x-1)=-2x+3,
设x-1=t,则x=t+1,
∴f(t)=-2(t+1)+3=-2t+1;
即f(x)=-2x+1.
故答案为:-2x+1.
点评:本题考查了用换元法求函数解析式的问题,换元时应注意自变量取值范围的变化,是容易题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C方程为
x2
a2
+
y2
b2
=1(a>b>0),左、右焦点分别是F1,F2,若椭圆C上的点P(1,
3
2
)到F1,F2的距离和等于4.
(Ⅰ)写出椭圆C的方程和焦点坐标;
(Ⅱ)设点M是椭圆C的动点,MF1交椭圆与点N,求线段MN中点T的轨迹方程;
(Ⅲ)直线l过定点M(0,2),且与椭圆C交于不同的两点A,B,若∠A0B为锐角(O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

以40千米/时的速度向北偏东30°航行的科学探测船上释放了一个探测气球,气球顺风向正东飘去,3分钟后气球上升到1千米处,从探测船上观察气球,仰角为30°,求气球的水平飘移速度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆(x+1)2+y2=8的圆心为M,N(t,0),t>0且t≠2
2
-1,设Q为圆上任一点,线段QN的垂直平分线交直线MQ于点P.
(1)试讨论动点P的轨迹类型;
(2)当t=1时,设动点P的轨迹为曲线C,过C上任一点P作直线l,l与曲线C有且只有一个交点,l与圆M交于点AB,若△ABN的面积是
31
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率e=
3
2

(1)求椭圆E的方程;
(2)经过A、B两点分别作抛物线C的切线l1、l2,切线l1与l2相交于点M.证明:点M定在直线y=-1上;
(3)椭圆E上是否存在一点M′,经过点M′作抛物线C的两条切线M′A′、M′B′(A′、B′为切点),使得直线A′B′过点F?若存在,求出切线M′A′、M′B′的方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

有人收集了春节期间平均气温x(℃)与某取暖商品销售额y(万元)的有关数据(x,y)分别为:(-2,20),(-3,23),(-5,27),(-6,30),根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间线性回归方程y=bx+a的系数b=-2.4,则预测平均气温为-8℃时该商品的销售额为
 
万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

OP
=(x,y),将
OP
逆时针旋转角θ到OP′,则点P′的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程|ax|=x+a(a>0)有两个解,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
m
=2
a
-3
b
n
=4
a
-2
b
p
=6
a
-
b
,则
p
m
n
表示为
 

查看答案和解析>>

同步练习册答案