精英家教网 > 高中数学 > 题目详情
12.求定积分:$\int_1^2{{{({x+1})}^2}dx=}$$\frac{19}{3}$.

分析 直接利用定积分的性质、运算法则求解.

解答 解:$\int_1^2{{{({x+1})}^2}dx=}$[$\frac{1}{3}(x+1)^{3}$]${|}_{1}^{2}$
=($\frac{1}{3}×{3}^{3}$)-($\frac{1}{3}×{2}^{3}$)
=$\frac{19}{3}$.
故答案为:$\frac{19}{3}$.

点评 本题考查定积分的求法,是基础题,解题时要注意定积分的性质、运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
几何题代数题合计
25530
101020
合计351550
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
(1)能否在犯错的概率不超过0.025的前提下认为视觉和空间能力与性别有关?
(2)现从选择做几何题的10名女生中任意抽取3人对她们的答题情况进行全程研究,记甲、乙、丙三位女生被抽到的人数为X,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(2,1),则与$\overrightarrow{a}$垂直且长度为$\sqrt{5}$的向量$\overrightarrow b$的坐标为(1,-2)或(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知过函数f(x)=x3+ax2+1的图象上一点B(1,b)的切线的斜率为-3.
(1)求a、b的值;
(2)求A的取值范围,使不等式f(x)≤A-1993对于x∈[-1,4]恒成立;
(3)令g(x)=-f(x)-3x2+tx+1.是否存在一个实数t,使得当x∈(0,1]时,g(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对两个分类变量进行独立性检验的主要作用是(  )
A.判断模型的拟合效果
B.对两个变量进行相关分析
C.给出两个分类变量有关系的可靠程度
D.估计预报变量的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知方程x2+y2+2x-6y+n=0表示圆C.
(1)写出此圆的圆心C的坐标和n的范围;
(2)若圆C与圆M:(x-3)2+y2=1相切,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(1)设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是[$\frac{3}{2e}$,1).
(2)已知f(x)=xex,g(x)=-(x+1)2+a,若?x1,x2∈R,使得f(x2)≤g(x1)成立,则实数a的取值范围$[-\frac{1}{e},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=(  )
A.1B.2C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一机器可以按不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少是随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示平均每小时生产的有缺点物件的个数,现观测得到(x,y)的五组观测值为:
(2,2.2)(3,3.8)(4,5.5)(5,6.5)(6,7)
若由资料知y对x呈线性相关关系,试求:
(1)线性回归方程
(2)若实际生产中所允许的平均每小时有缺点的物件数不超过10,则机器的速度每秒不得超过多少转?(结果取整数)
有关公式:$b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\bar y})}}}{{\sum_{i=1}^n{{{({{x_i}-\bar x})}^2}}}}\bar=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}},a=\bar y-b\overline x$.

查看答案和解析>>

同步练习册答案