精英家教网 > 高中数学 > 题目详情
20.三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,$AB=4\sqrt{2}$,BC=3.点E是CD边的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.
(1)证明:BC∥平面PDA;
(2)求二面角P-AD-C的大小;
(3)求直线PA与直线FG所成角的余弦值.

分析 (1)由四边形ABCD是长方形,知BC∥AD,由此能证明BC∥平面PDA.
(2)推导出AD⊥DC,AD⊥平面PCD,从而AD⊥DC,AD⊥PD,进而∠PDC即为二面角P-AD-C的平面角,由此能求出二面角P-AD-C的大小.
(3)连接AC,推导出AC∥FG,从而∠PAC为直线PA与直线FG所成角或其补角,由此能求出直线PA与直线FG所成角的余弦值.

解答 证明:(1)因为四边形 A BCD是长方形,
所以 BC∥AD,
因为 BC?平面 PD A,AD?平面 PD A,
所以 BC∥平面 PD A
解:(2)∵△ABCD是矩形,∴AD⊥DC,又平面PDC⊥平面ABCD,
且平面PDC∩平面ABCD=CD,AD?平面ABCD,
∴AD⊥平面PCD,又CD、PD?平面PDC,
∴AD⊥DC,AD⊥PD,∴∠PDC即为二面角P-AD-C的平面角,
在Rt△PDE中,PD=4,$DE=\frac{1}{2}AB=2\sqrt{2},PE=\sqrt{P{D^2}-D{E^2}}=2\sqrt{2}$.
∴$tan∠PDC=\frac{PE}{DE}=1$,
即二面角P-AD-C的大小为45°.
(3)如下图所示,连接AC,∵AF=2FB,CG=2GB,
即$\frac{AF}{FB}=\frac{CG}{GB}=2$,∴AC∥FG,
∴∠PAC为直线PA与直线FG所成角或其补角,
在△PAC中,PA=$\sqrt{P{D}^{2}+A{D}^{2}}$=5,AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$\sqrt{41}$,
∴PA2+PC2=AC2
∴PA2+PC2=AC2
∴cos∠PAC=$\frac{PA}{AC}=\frac{5}{\sqrt{41}}$=$\frac{5\sqrt{41}}{41}$,
∴直线PA与直线FG所成角的余弦值为$\frac{{5\sqrt{41}}}{41}$.

点评 本题考查线面关系、二面角求法,线面角余弦值等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;
(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求X=60时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.蓝军和红军进行军事演练,蓝军在距离$\sqrt{3}$的军事基地C和D,测得红军的两支精锐部队分别在A处和B处,且∠ADB=30°,∠BDC=30°,∠DCA=60°,∠ACB=45°,如图所示,则红军这两支精锐部队间的距离是(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\sqrt{6}$C.$\frac{3}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆O:x2+y2=25,圆O1的圆心为O1(m,0),⊙O与⊙O1交于点P(3,4),过点P且斜率为k(k≠0)的直线l分别交⊙O、⊙O1于点A,B.
(1)若k=1且$|BP|=7\sqrt{2}$,求⊙O1的方程;
(2)过点P作垂直于l的直线l1分别交⊙O、⊙O1于点C,D,当m为常数时,试判断|AB|2+|CD|2是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若向量$\overrightarrow a=(1,1)$,$\overrightarrow b=(2,5)$,$\overrightarrow c=(x,4)$,满足条件$(8\overrightarrow a-\overrightarrow b)•\overrightarrow c=30$,则x等于(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数$z=\frac{1+2i}{i}$,i为虚数单位.则z的虚部为(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图是一个几何体的三视图,则这个几何体是(  )
A.四棱锥B.圆锥C.三棱锥D.三棱台

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定义域为R的函数$f(x)=\frac{{n-{2^x}}}{{{2^{x+1}}+m}}$是奇函数.
(Ⅰ)求m,n的值;
(Ⅱ)当$x∈[{\frac{1}{2},3}]$时,f(kx2)+f(2x-1)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知直线l经过点P(4,1),且在两坐标轴上的截距相等,求直线l的方程;
(2)已知直线l经过点P(3,4),且直线l的倾斜角为θ(θ≠90°),若直线l经过另外一点(cosθ,sinθ),求此时直线l的方程.

查看答案和解析>>

同步练习册答案