精英家教网 > 高中数学 > 题目详情
8.已知圆O:x2+y2=25,圆O1的圆心为O1(m,0),⊙O与⊙O1交于点P(3,4),过点P且斜率为k(k≠0)的直线l分别交⊙O、⊙O1于点A,B.
(1)若k=1且$|BP|=7\sqrt{2}$,求⊙O1的方程;
(2)过点P作垂直于l的直线l1分别交⊙O、⊙O1于点C,D,当m为常数时,试判断|AB|2+|CD|2是否为定值?若是,求出这个定值;若不是,请说明理由.

分析 (1)通过k=1且$|BP|=7\sqrt{2}$,利用圆心到直线的距离与半径半弦长的关系,求出m的值,然后求圆O1的方程;
(2)设出A、B、C、D四点坐标,设出直线AB方程,通过方程组求出x1,x2,利用弦长公式求出AB,CD然后求出它们的和,即可判断是否是定值.

解答 解:(1)k=1时,直线l的方程为x-y+1=0,
由$|BP|=7\sqrt{2}$,得${(\frac{|m+1|}{{\sqrt{2}}})^2}+{(\frac{{7\sqrt{2}}}{2})^2}={(m-3)^2}+{4^2}$,解得m=14或m=0
因为m>0,所以m=14
即圆O1的方程为(x-14)2+y2=137;
(2)直线l的方程为y-4=k(x-3)
由$\left\{\begin{array}{l}{x^2}+{y^2}=25\\ y-4=k(x-3)\end{array}\right.$消去y得:(1+k2)x2+(8k-6k2)x+9k2-24k-9=0,
${x_B}+{x_A}=-\frac{{8k-6{k^2}}}{{1+{k^2}}}$,${x_B}{x_A}=\frac{{9{k^2}-24k-9}}{{1+{k^2}}}$,
$|AB{|^2}={({x_B}-{x_A})^2}+{({y_B}-{y_A})^2}$=$(1+{k^2}){({x_B}-{x_A})^2}$=$(1+{k^2})[{({x_B}+{x_A})^2}-4{x_B}{x_A}]=\frac{{4{m^2}}}{{1+{k^2}}}$,
因为直线l1垂直于l,所以用$-\frac{1}{k}$替换上式中的k,
得$|CD{|^2}=\frac{{4{m^2}}}{{1+{{(-\frac{1}{k})}^2}}}=\frac{{4{m^2}{k^2}}}{{1+{k^2}}}$,
所以|AB|2+|CD|2=4m2

点评 本题考查圆的方程的求法,直线与圆的位置关系,弦长公式的应用,考查计算能力,转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.
(1)求证:平面EAC⊥平面PBC;
(2)若a=2,求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知具有线性相关的两个变量x,y之间的一组数据如表:
x01234
y24.24.54.6m
且回归方程是y=0.65x+2.7,则m=(  )
A.5.6B.5.3C.5.0D.4.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a,b∈R,则复数(a2-6a+10)+(-b2+4b-5)i对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线y2=8x的焦点恰好是椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0)的右焦点,则椭圆方程为$\frac{{x}^{2}}{5}+{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和${S_n}={2^{n+2}}-4{\;}^{\;}({n∈{N^*}})$,数列{bn}满足${b_{n+1}}={b_n}+\frac{1}{2}$,b1=1
(1)分别求数列{an}、{bn}的通项公式;
(2)若数列{cn}满足cn=an•bn,Tn是数列{cn}的前n项和,若存在正实数k,使不等式$k({n^2}-9n+36){T_n}>6{n^2}{a_n}$对于一切的n∈N*恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,$AB=4\sqrt{2}$,BC=3.点E是CD边的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.
(1)证明:BC∥平面PDA;
(2)求二面角P-AD-C的大小;
(3)求直线PA与直线FG所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a,b∈R,ab>0,则下列不等式中不正确的是(  )
A.|a+b|≥a-bB.$2\sqrt{ab}≤|{a+b}|$C.|a+b|<|a|+|b|D.$|{\frac{b}{a}+\frac{a}{b}}|≥2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某程序框图如图所示,当输入x的值是1时,输出y的值是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案