精英家教网 > 高中数学 > 题目详情
14.在△ABC中,A=2C,c=2,a2=4b-4,则a=3$±\sqrt{3}$.

分析 A=2C,可得sinA=sin2C,利用正弦定理可得:a=2ccosC,再利用余弦定理与已知化简即可得出.

解答 解:∵A=2C,∴sinA=sin2C,∴$\frac{a}{sinA}$=$\frac{a}{sin2C}$=$\frac{c}{sinC}$,
∴a=2ccosC=2c×$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,
∴a2b=c(a2+b2-c2),
∴b(4b-4)=2(4b-4+b2-4),
化为:b2-6b+6=0,
解得b=3$±\sqrt{3}$.
故答案为:3$±\sqrt{3}$.

点评 本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知F是抛物线C:y2=2px(p>0)的焦点,点P(1,t)在抛物线C上,且|PF|=$\frac{3}{2}$.
(1)求p,t的值;
(2)设O为坐标原点,抛物线C 上是否存在点A(A与O不重合),使得过点O作线段OA的垂线与抛物线C交于点B,直线AB分别交x轴、y轴于点D,E,且满足S△OAB=$\frac{3}{2}{S_{△ODE}}$(S△OAB表示△OAB的面积,S△ODE表示△ODE的面积)?若存在,求出点A的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题,正确命题个数为(  )
①若tanA•tanB>1,则△ABC一定是钝角三角形;
②若sin2A=sin2B,则△ABC一定是等腰三角形;
③若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC一定是等边三角形;
④在锐角三角形ABC中,一定有sinA>cosB.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=x(x+k)(x+2k),且f′(0)=8,则k=(  )
A.2B.-2C.±2D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=xex,g(x)=-(x+1)2+a,若?x1,x2∈R,使得f(x1)≤g(x2)成立,则实数a的取值范围是[-$\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果函数f(x)=sin(2πx+θ)(0<θ<2π)的最小正周期是T,且当x=1时取得最大值,那么(  )
A.T=1,θ=$\frac{π}{2}$B.T=1,θ=πC.T=2,θ=πD.T=2,θ=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=($\sqrt{3}$cosx,0),$\overrightarrow{b}$=(0,sinx),记函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)2+$\sqrt{3}$sin2x.求:
(1)函数f(x)的单调递增区间;
(2)函数f(x)的在区间(-$\frac{π}{4}$,$\frac{π}{4}$)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=2sin2(ωx)+2$\sqrt{3}$sin(ωx+$\frac{π}{2}}$)-1(ω>0)的最小正周期为1,则ω=π,函数f(x)在区间[-$\frac{1}{6}$,$\frac{1}{4}}$]上的值域为[0,2$\sqrt{3}$-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=cos(3x+φ)(0≤φ≤π)是奇函数,则φ的值为$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案