精英家教网 > 高中数学 > 题目详情
8.已知角α的终边是射线y=-x(x≥0),则sinα的值等于(  )
A.±$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.±$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

分析 根据角α的终边落在直线y=-x(x≥0)上,判断出角α所在的象限,设出设终边上任一点P(x,-x),然后利用定义求解.

解答 解:由题意角α在第四象限,设终边上任一点P(x,-x),则OP=$\sqrt{2}$x,
∴sinα=$\frac{-x}{\sqrt{2}x}=-\frac{\sqrt{2}}{2}$,
故选:D.

点评 本题主要考查三角函数的定义,应注意确定角α所在的象限,避免增解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知偶函数f(x)在区间[0,+∞)上为增函数,且f(-1)=$\frac{1}{2}$,若实数a满足f(loga3)+f(${log_a}\frac{1}{3}$)≤1,则实数a的取值范围为(  )
A.0<a≤$\frac{1}{3}$B.a≥3,或0<a<$\frac{1}{4}$C.a≥3,或0<a≤$\frac{1}{3}$D.a≥3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,则z=3x+y的最大值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)已知点M在线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,四棱锥P-ABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD,E、F、H分别是线段PA、PD、AB的中点.求证:
(1)PB∥平面EFH;
(2)PD⊥平面AHF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若asinθ+cosθ=1,2bsinθ-cosθ=1,则ab的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)是定义在R上的奇函数,对任意x∈R都有f(x)=f(x+4),当x∈(-2,0)时,f(x)=2x,则f(2017)-f(2016)的值为(  )
A.-1B.1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆C1:$\frac{{x}^{2}}{5}$+y2=1与双曲线C2的公共焦点为F1,F2,A,B分别为C1,C2在第二、第四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等腰直角△ABC中,P为平面ABC内的一点,斜边AB=4,则$\overrightarrow{PC}•(\overrightarrow{PA}+\overrightarrow{PB})$的最小值是(  )
A.$-\frac{8}{9}$B.-1C.-2D.$-\frac{16}{9}$

查看答案和解析>>

同步练习册答案