精英家教网 > 高中数学 > 题目详情
19.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,则z=3x+y的最大值为18.

分析 作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最大值.

解答 解:约束条件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,对应的平面区域如图:
由z=3x+y得y=-3x+z,
平移直线y=-3x+z,则由图象可知当直线y=-3x+z经过点A时直线y=-3x+z的截距最大,
此时z最大,
由$\left\{\begin{array}{l}{y=4}\\{3x-2y=6}\end{array}\right.$得A($\frac{14}{3}$,4),
此时z=3×$\frac{14}{3}$+4=18,
故答案为:18.

点评 本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.f(x)=$\sqrt{3}sin(2x-\frac{π}{12})-cos(2x-\frac{π}{12})$在x∈$[0,\frac{π}{2}]$的对称轴为(  )
A.$x=\frac{π}{8}$B.$x=\frac{π}{4}$C.$x=\frac{π}{3}$D.$x=\frac{3π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x+a|-|x-1|.
(Ⅰ)当a=-2时,求不等式$f(x)≥\frac{1}{2}$的解集;
(Ⅱ)若f(x)≥2有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从区间(0,2)上任取一个实数m,则直线x-$\sqrt{3}$y=0与圆(x-1)2+y2=m(m>0)相交的概率为(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,则z=3x+y的取值范围为[6,18].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面直角坐标系中,正方形ABCD的中心坐标为(1,0),其一边AB所在直线的方程为x-y+1=0,则边CD所在直线的方程为(  )
A.x-y-1=0B.x-y-2=0C.x-y-3=0D.x-y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知角α的终边是射线y=-x(x≥0),则sinα的值等于(  )
A.±$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.±$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|-a-2<x<a+2},B={x|x≤-2或x≥4},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案