精英家教网 > 高中数学 > 题目详情
13.若asinθ+cosθ=1,2bsinθ-cosθ=1,则ab的值为$\frac{1}{2}$.

分析 依题意,可求得a=$\frac{1-cosθ}{sinθ}$,b=$\frac{1+cosθ}{2sinθ}$,利用同角三角函数基本关系可得答案.

解答 解:∵asinθ+cosθ=1,bsinθ-cosθ=1,
∴a=$\frac{1-cosθ}{sinθ}$,b=$\frac{1+cosθ}{2sinθ}$,
∴ab=$\frac{1-cosθ}{sinθ}$•$\frac{1+cosθ}{2sinθ}$=$\frac{1-co{s}^{2}θ}{2si{n}^{2}θ}$=$\frac{si{n}^{2}θ}{2si{n}^{2}θ}$=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$.

点评 本题考查同角三角函数基本关系的运用,求得a=$\frac{1-cosθ}{sinθ}$,b=$\frac{1+cosθ}{2sinθ}$是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x-3|-5,g(x)=|x+2|-2.
(1)求不等式f(x)≤2的解集;
(2)若不等式f(x)-g(x)≥m-3有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,则z=3x+y的取值范围为[6,18].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为迎接“义务教育均衡检查”,某校在初中三个年级中开展“义务教育均衡”知晓情况调查,其中初中一年级共500人,初中二年级共650人,初中三年级共450人,现用分层抽样的方式在初中三个年级中共抽取32名同学进行调查,则初中一年级应抽取的人数为(  )
A.13B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知角α的终边是射线y=-x(x≥0),则sinα的值等于(  )
A.±$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.±$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知角α的终边过点P(-8m,-6sin30°),且cosα=-$\frac{4}{5}$,则m的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.±$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(Ⅰ)求值:sin(-$\frac{31π}{6}$);
(Ⅱ)已知f(α)=$\frac{sin(α-\frac{π}{2})tan(α-\frac{π}{2})}{cos(-α-π)}$,若sinα=-$\frac{1}{5}$,且α为第三象限角,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2+2x,现已画出函数f(x)在y轴左侧的图象,如图所示.
(1)补充完成f(x)的图象,并求函数f(x),x∈R的解析式;
(2)若函数g(x)=f(2x)+2,x∈[-1,1]的值域;
(3)求解关于x的不等式f(3x-3)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=-2sin(2x+$\frac{π}{4}$)图象的一个对称中心是(  )
A.($\frac{π}{8}$,0)B.(-$\frac{π}{8}$,0)C.($\frac{π}{4}$,0)D.(-$\frac{π}{4}$,0)

查看答案和解析>>

同步练习册答案