精英家教网 > 高中数学 > 题目详情
12.已知命题p:对?x∈R,x2≥0;命题q:若α为第一象限角,β为第二象限角,则α<β,则以下命题为假命题的是.
A.(¬p)∨(¬q)B.p∨qC.(¬p)∨qD.p∧(¬q)

分析 分别判断命题p,q的真假性,根据复合命题真假关系进行判断即可.

解答 解:命题p:对?x∈R,x2≥0,为真命题.
命题q:若α为第一象限角,β为第二象限角,则α<β为假命题,比如α=390°,β=120°,则α<β不成立,
则(¬p)∨q为假命题,其余为真命题.
故选:C.

点评 本题主要考查复合命题的真假判断,根据条件判断命题p,q的真假是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.过定点A(-a,0)(a>0)作任意直线交y轴于B点,在直线上取一点P,使|BP|=|OB|,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=1-2sin(x+$\frac{π}{8}$)[sin(x+$\frac{π}{8}$)-cos(x+$\frac{π}{8}$)],x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x+$\frac{π}{8}$)在区间[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数D(x)=$\left\{\begin{array}{l}1\\ 0\end{array}\right.\begin{array}{l}{\;}&{x为有理数}\\{\;}&{x为无理数}\end{array}$,则(  )
A.D(D(x))=1,0是D(x)的一个周期B.D(D(x))=1,1是D(x)的一个周期
C.D(D(x))=0,1是D(x)的一个周期D.D(D(x))=0,D(x)的最小正周期不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆C经过直线x+y-1=0与x2+y2=4的交点,且圆C的圆心为(-2,-2),则过点(2,4)向圆C作切线,所得切线方程为(  )
A.5x-12y+38=0或3x-4y+10=0B.12x-5y+4=0或3x-4y+10=0
C.5x-12y+38=0或x=2D.3x-4y+10=0或x=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆C1:x2+y2+6x=0关于直线l1:y=2x+1对称的圆为C,则圆C的方程为(  )
A.(x+1)2+(y+2)2=9B.(x+1)2+(y-2)2=9C.(x-1)2+(y-2)2=9D.(x-1)2+(y+2)2=9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.现有两封e-mail需要寄出,且有4个电子邮箱可以选择,则两封信都投到同一个电子邮箱的概率是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平行四边形ABCD中,AB=8,AD=5,$\overrightarrow{CP}$=3$\overrightarrow{PD}$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=(  )
A.22B.23C.24D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线l:y=kx-$\sqrt{3}$与椭圆C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案