精英家教网 > 高中数学 > 题目详情
20.程序框图如图所示:如果输入x=5,则输出结果为(  )
A.325B.109C.973D.295

分析 方法一:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量x的值,并输出.模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.
方法二:由程序框图可知:此问题相当于先求出满足以下条件:数列{an}的a1=5,an+1=3an-2,要求其通项公式第一次大于或等于200时即输出其值.

解答 解:方法一:程序在运行过程中各变量的值如下表示:
x    是否继续循环
循环前   5/
第一圈   13        是
第二圈   37        是
第三圈   109       是
第四圈   325       否
故最后输出的x值为325,
方法二:由序框图可知:此问题相当于先求出满足以下条件数列的通项公式,数列{an}的a1=5,an+1=3an-2,当an≥200时,即输出an
∵an+1=3an-2,∴an+1-1=3(an-1),
∵a1-1=5-1=4≠0,∴数列{an}是以4为首项,3为公比的等比数列,
∴an-1=4×3n-1,
∴an=4×3n-1+1,
令4×3n-1+1≥200,解得n≥5.
故当n=5时,输出的x应是4×34+1=325.
选:A.

点评 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知A,B是椭圆3x2+y2=m(m>0)上不同两点,线段AB的中点为N(1,3).则m的取值范围为(12,+∞),AB所在的直线方程为y=-x+4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,P是椭圆上的点.若PF1⊥F1F2,∠F1PF2=60°,则椭圆的离心率为(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右顶点为A,离心率为e,且椭圆C过点$E(2e,\frac{b}{2})$,以AE为直径的圆恰好经过椭圆的右焦点F.
(1)求椭圆C的标准方程;
(2)已知动直线l(直线l不过原点)与椭圆C交于P、Q两点,且△OPQ的面积S△OPQ=1,求线段PQ的中点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,F是椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,已知点A(0,-2)与椭圆右顶点关于直线y=-x对称,且直线AF的斜率为$\frac{2\sqrt{3}}{3}$.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)若点C,D(C在第一象限)都在椭圆Γ上,点B为椭圆Γ的右顶点,满足$\overrightarrow{OC}$=λ$\overrightarrow{DB}$,且$\overrightarrow{OC}$•$\overrightarrow{OD}$=0,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)满足f(1)=0,且f(x)在R上的导数满足f′(x)+1<0,则不等式f(x2)<-x2+1的解集为(  )
A.(-∞,-1)∪(1,+∞)B.(1,+∞)C.(-∞,1)D.(-1,1 )

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(x1,y1,z1),$\overrightarrow{b}$=(x2,y2,z2),$\overrightarrow{a}$≠$\overrightarrow{b}$,设|$\overrightarrow{a}-\overrightarrow{b}$|=k,则|$\overrightarrow{a}-\overrightarrow{b}$与单位向量$\overrightarrow{i}$=(1,0,0)夹角的余弦值为(  )
A.$\frac{{x}_{1}-{x}_{2}}{k}$B.$\frac{{x}_{2}-{x}_{1}}{k}$C.$\frac{|{x}_{1}-{x}_{2}|}{k}$D.±$\frac{{x}_{1}-{x}_{2}}{k}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A={x|2≤x≤4},B={x|x>3,或x<1},C={x|t+1<x<2t},t∈R.
(Ⅰ)求A∪∁UB;
(Ⅱ)若A∩C=C,求t的取值范围.

查看答案和解析>>

同步练习册答案