精英家教网 > 高中数学 > 题目详情
3.不等式|x+1|+|x-2|≤|2x-1|的解集为{x|x≤-1,或 x≥2}.

分析 把要解的不等式等价转化为与之等价的四个不等式组,求出每个不等式组的解集,再取并集,即得所求.

解答 解:由不等式|x+1|+|x-2|≤|2x-1|,可得 $\left\{\begin{array}{l}{x<-1}\\{-x-1+2-x≤1-2x}\end{array}\right.$ ①,或$\left\{\begin{array}{l}{-1≤x<\frac{1}{2}}\\{x+1+2-x≤1-2x}\end{array}\right.$ ②,或$\left\{\begin{array}{l}{\frac{1}{2}≤x<2}\\{x+1+2-x≤2x-1}\end{array}\right.$ ③,或$\left\{\begin{array}{l}{x≥2}\\{x+1+x-2≤2x-1}\end{array}\right.$④.
解①求得x<-1,解②求得x=-1,解③求得x∈∅,解④求得x≥2.
综上可得,不等式的解集为{x|x≤-1,或 x≥2},
故答案为:{x|x≤-1,或 x≥2}.

点评 本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.为了考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校的高中生中随机地抽取了300名学生进行调查,得到如下列联表:
喜欢数学不喜欢数学总计
3785122
35143178
总计72228300
由表中数据计算K2≈4.513,判断高中生的性别与是否喜欢数学课程之间是否有关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定积分:$\int_{-\frac{π}{2}}^{\frac{π}{2}}{({x+sinx})}dx$=(  )
A.$\frac{π^2}{8}+1$B.$\frac{π^2}{4}+2$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知曲线C的极坐标方程为ρ2=$\frac{36}{4co{s}^{2}θ+9si{n}^{2}θ}$;
①若以极点为原点,极轴所在的直线为x轴,求曲线C的直角坐标方程;
②若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}为等比数列,前n项和为Sn,若a1<a2,a52=10,且3S1,2S2,S3成等差数列,则数列{an}的通项公式an=$\frac{\sqrt{10}}{81}$×3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,平面四边形ABCD所在的平面与平面α平行,且四边形ABCD在平面α内的平行投影A1B1C1D1是一个平行四边,则四边形ABCD的形状一定是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某科技公司组织技术人员进行新项目研发,技术人员将独立地进行项目中不同类型的实验A,B,C,若A,B,C实验成功的概率分别为 $\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$.
(1)对A,B,C实验各进行一次,求至少有一次实验成功的概率;
(2该项目要求实验A,B各做两次,实验C做3次,如果A实验两次都成功则进行实验B并获奖励10000元,两次B实验都成功则进行实验C并获奖励30000元,3次C实验只要有两次成功,则项目研发成功并获奖励60000元(不重复得奖),且每次实验相互独立,用X表示技术人员所获奖励的数值,写出X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(2cosx,1),$\overrightarrow{b}$=(sinx+cosx,-1),若f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数y=f(x)的单调递减区间;
(2)求函数y=f(x)在x∈[0,$\frac{π}{2}$]内的值域.

查看答案和解析>>

同步练习册答案