精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=mx-m2-4,(m>0,x∈R).若a2+b2=8,则$\frac{f(b)}{f(a)}$的取值范围是(  )
A.[$\sqrt{3}$-2,$\sqrt{3}$+2]B.[2-$\sqrt{3}$,2+$\sqrt{3}$]C.[0,2+$\sqrt{3}$]D.[0,2-$\sqrt{3}$]

分析 求出f(x)的零点,判断f(b)是否为0,利用排除法可选出答案.

解答 解:令f(x)=0得mx=m2+4,∴x=m+$\frac{4}{m}$≥2$\sqrt{4}$=4.
∵a2+b2=8,∴-2$\sqrt{2}$≤b$≤2\sqrt{2}$.∴f(b)≠0.∴$\frac{f(b)}{f(a)}$≠0.排除A,C,D.
故选:B.

点评 本题考查了函数零点的定义,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若(1+a)n(a>0)的展开式中所有项系数和为64,且展开式的第三项等于15,则a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x(1-x).
(1)在如图所给直角坐标系中画出函数f(x)的草图,并直接写出函数f(x)的零点;
(2)求出函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\left\{\begin{array}{l}{2x+3,x≤0}\\{x+3,0<x≤1}\\{-x+5,x>1}\end{array}\right.$的最大值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2$\sqrt{3}sinxcosx+2{cos^2}$x-1(x∈R).
(1)求函数f(x)的单调递减区间;
(2)若f(x0)=$\frac{6}{5}$,${x_0}∈[{\frac{π}{4},\frac{π}{2}}]$,求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若将边长为4cm的等边三角形,绕其一边旋转一周,则其围成的几何体的体积为16πcm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{cos2x+3sinx+2}{cos2x+2}$的最大值是M,最小值是m,则M+m的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.I.已知集合M={(x,y)|$\frac{y-3}{x-2}$=a+1},N={(x,y)|(a2-1)x+(a-1)y=15}.若M∩N=∅,则a的值为(  )
A.±1,-4,2.5或0B.±1,-4或2.5C.2.5或-4D.±1,-4或0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.3<m<5是方程$\frac{{x}^{2}}{m-5}$+$\frac{{y}^{2}}{{m}^{2}-m-6}$=1表示的图形为双曲线的(  )
A.充分但非必要条件B.必要但非充分条件
C.充分必要条件D.既非充分又非必要条件

查看答案和解析>>

同步练习册答案