分析 (I)在△ABC中根据余弦定理计算BC,再利用正弦定理计算∠ABC即可得出方位;
(II)在△BCD中,利用正弦定理计算∠BCD,再计算BD得出追击时间.
解答 解:(I)由题意可知AB=$\sqrt{3}$-1,AC=2,∠BAC=120°,
在△ABC中,由余弦定理得:BC2=AB2+AC2-2AB•AC•cos120°=6,
∴BC=$\sqrt{6}$.
由正弦定理得:$\frac{AC}{sin∠ABC}=\frac{BC}{sin∠BAC}$,即$\frac{2}{sin∠ABC}=\frac{\sqrt{6}}{\frac{\sqrt{3}}{2}}$,解得sin∠ABC=$\frac{\sqrt{2}}{2}$,
∴∠ABC=45°,
∴C船在B船的正西方向.
(II)由(1)知BC=$\sqrt{6}$,∠DBC=120°,设t小时后缉私艇在D处追上走私船,
则BD=10t,CD=10$\sqrt{3}$t,
在△BCD中,由正弦定理得:$\frac{10\sqrt{3}t}{sin120°}=\frac{10t}{sin∠BCD}$,
解得sin∠BCD=$\frac{1}{2}$,∴∠BCD=30°,
∴△BCD是等腰三角形,∴10t=$\sqrt{6}$,即t=$\frac{\sqrt{6}}{10}$.
∴缉私艇沿东偏北30°方向行驶$\frac{\sqrt{6}}{10}$小时才能最快追上走私船.
点评 本题考查了正余弦定理解三角形,解三角形的实际应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2+b2>c2? | B. | a2+c2>b2? | C. | b2+c2>a2? | D. | b2+a2=c2? |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-3,3] | B. | (0,$\frac{π}{2}$) | C. | [-3,-$\frac{π}{2}$)∪(0,$\frac{π}{2}$) | D. | (-3,-$\frac{π}{2}$)∪(0,$\frac{π}{2}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com