精英家教网 > 高中数学 > 题目详情
18.如图,O是圆锥底面圆的圆心,圆锥的轴截面PAB为等腰直角三角形,C为底面圆周上一点.
(Ⅰ)若弧$\widehat{BC}$的中点为D,求证:AC∥平面POD
(Ⅱ)如果△PAB面积是9,求此圆锥的表面积与体积.

分析 (Ⅰ)由AB是底面圆的直径,可得AC⊥BC.再由$\widehat{BC}$的中点为D,可得OD⊥BC.则AC∥OD.由线面平行的判定可得AC∥平面POD;
(Ⅱ)设圆锥底面圆半径为r,高为h,母线长为l,由题意可得h=r,l=$\sqrt{2}r$,由△PAB面积是9求得r=3,代入圆锥表面积公式与体积公式求解.

解答 (Ⅰ)证明:∵AB是底面圆的直径,∴AC⊥BC.
∵$\widehat{BC}$的中点为D,∴OD⊥BC.
又AC、OD共面,∴AC∥OD.
又AC?平面POD,OD?平面POD,
∴AC∥平面POD;
(Ⅱ)解:设圆锥底面圆半径为r,高为h,母线长为l,
∵圆锥的轴截面PAB为等腰直角三角形,∴h=r,l=$\sqrt{2}r$,
由${S}_{△ABP}=\frac{1}{2}×2r×h={r}^{2}=9$,得r=3,
∴${S}_{表面积}=πrl+π{r}^{2}=πr×\sqrt{2}r+π{r}^{2}=9(1+\sqrt{2})π$,
$V=\frac{1}{3}π{r}^{2}h=9π$.

点评 本题考查直线与平面平行的判定,考查圆锥表面积与体积的求法,考查空间想象能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设m是常数,若点F(5,0)是双曲线$\frac{{y}^{2}}{m}$+$\frac{{x}^{2}}{9}$=1的一个焦点,则m=-16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z满足(1+i)z=|$\sqrt{3}$+i|,则在复平面内,z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已经等差数列{an}的前n项和为Sn,S9>0,S8<0,则使得Sn取得最小值的n为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在海岸A处,发现北偏东45°方向,距离A为$(\sqrt{3}-1)$海里的B处有一艘走私船,在A处北偏西75°方向,距离A为2 海里的C处有一艘缉私艇奉命以$10\sqrt{3}$海里/时的速度追截走私船,此时,走私船正以10 海里/时的速度从B处向北偏东30°方向逃窜
(Ⅰ)问C船与B船相距多少海里?C船在B船的什么方向?
(Ⅱ)问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)是定义在(-∞,+∞)内的可导函数,且满足:xf'(x)+f(x)>0,对于任意的正实数a,b,若a>b,则必有(  )
A.af(b)>bf(a)B.bf(a)>af(b)C.af(a)<bf(b)D.af(a)>bf(b)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,A=50°,AB=2,且△ABC的面积为$\frac{{\sqrt{3}}}{2}$,则BC的长为$\sqrt{4+\frac{3}{4si{n}^{2}50}-\frac{2\sqrt{3}cos50°}{sin50°}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,底面ABCD是∠DAB且边长为a的菱形,侧面PAD是等边三角形,且平面PAD⊥底面ABCD.
(1)若G为AD的中点,求证:BG⊥平面PAD;
(2)求二面角A-BC-P的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\frac{π}{2}<A<π$,且sinA=$\frac{4}{5}$,那么sin2A等于(  )
A.$\frac{24}{25}$B.$\frac{7}{25}$C.$-\frac{12}{25}$D.$-\frac{24}{25}$

查看答案和解析>>

同步练习册答案