精英家教网 > 高中数学 > 题目详情
8.设m是常数,若点F(5,0)是双曲线$\frac{{y}^{2}}{m}$+$\frac{{x}^{2}}{9}$=1的一个焦点,则m=-16.

分析 根据题意,分析可得双曲线的焦点在x轴上,且有m<0、c=5,由双曲线的几何性质可得9+(-m)=25,解可得m的值,即可得答案.

解答 解:根据题意,点F(5,0)是双曲线$\frac{{y}^{2}}{m}$+$\frac{{x}^{2}}{9}$=1的一个焦点,
则双曲线的焦点在x轴上,且有m<0且c=5,
则有9+(-m)=25,
解可得m=-16;
故答案为:-16.

点评 本题考查双曲线的标准方程,注意由题意分析焦点的位置,不必进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知三个数12,x,3成等比数列,则实数x=±6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知角θ的终边在射线y=2x(x≤0)上,则sinθ+cosθ=-$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用数学归纳法证明1+3+5+…+(2n-1)=n2(n∈n*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.P(1,1)为椭圆$\frac{x2}{4}$+$\frac{y2}{2}$=1内一定点,经过P引一弦,使此弦在P点被平分,求此弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}(n=1,2,3…)的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列的通项公式;
(2)设bn=$\frac{({a}_{n})^{2}-1}{{S}_{n}}$,数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.合肥一中高一年级开展研学旅行活动,高一1、2、3、4、5五个班级,分别从西安、扬州、皖南这三条线路中选一条开展研学活动,每条路线至少有一个班参加,且1、2两个班级不选同一条线路,则共有(  )种不同的选法.
A.72B.108C.114D.124

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tanα=2
(1)求$\frac{3sinα-2cosα}{sinα-cosα}$的值;
(2)若α是第三象限角,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,O是圆锥底面圆的圆心,圆锥的轴截面PAB为等腰直角三角形,C为底面圆周上一点.
(Ⅰ)若弧$\widehat{BC}$的中点为D,求证:AC∥平面POD
(Ⅱ)如果△PAB面积是9,求此圆锥的表面积与体积.

查看答案和解析>>

同步练习册答案