精英家教网 > 高中数学 > 题目详情
18.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.B.C.2π+4D.3π+4

分析 由已知中的三视图可得,该几何体是以俯视图为底面的半圆柱,底面半径为1,高为2,代入柱体表面积公式,可得答案.

解答 解:由已知中的三视图可得,该几何体是以俯视图为底面的半圆柱,
底面半径为1,高为2,
故该几何体的表面积S=2×$\frac{1}{2}$π+(2+π)×2=3π+4,
故选:D

点评 本题考查的知识点是柱体的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图所示,一辆汽车从O点出发,沿海岸线一直线公路以100千米/小时的速度向东匀速行驶,汽车开动时,在距O点500千米,且与海岸线距离400千米的海面上M点处有一艘快艇与汽车同时出发,要把一件重要物品送给这辆汽车司机,该快艇至少以多大的速度行驶,才能将物品送到司机手中?并求出此时快艇行驶的方向.(参考数据:cos60°25′=$\frac{2}{5}$,cos53°08′=$\frac{3}{5}$,cos36°52′=$\frac{4}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知椭圆C:$\frac{x^2}{9}+\frac{y^2}{b^2}$=1(0<b<3)的左右焦点分别为E、F,过点F的直线交椭圆于A,B两点,若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,且$\overrightarrow{AE}$•$\overrightarrow{BE}$=16.
(1)求椭圆C的方程;
(2)设直线x=my+1与椭圆交于不同的两点P,Q,判断在x轴上是否存在定点N,使x轴平分∠PNQ,若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若-1≤a-b≤1且2≤a+b≤4,则4a-2b的取值范围[-1,7].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设Sn是数列{an}的前n项和,且2Sn=3an-$\frac{2}{9}$,an≠0(n∈N*);
(1)求数列{an}的通项公式an和Sn
(2)若bn=$\frac{2n+3}{{(9{S_n}+1)n(n+1)}}$=$\frac{a}{{n•{3^{n-1}}}}$-$\frac{1}{{(n+1)•{3^n}}}$,(n∈N*),求bn和a值;
(3)设Tn是数列{bn}的前n项和,求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\sqrt{4+3x-{x}^{2}}$的单调递减区间是(  )
A.(-∞,$\frac{3}{2}$]B.[$\frac{3}{2}$,+∞)C.(-1,$\frac{3}{2}$]D.[$\frac{3}{2}$,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有关正弦定理的叙述:
①正弦定理只适用于锐角三角形;
②正弦定理不适用于直角三角形;
③在某一确定的三角形中,各边与它的对角的正弦的比是定值;
④在△ABC中,sinA:sinB:sinC=a:b:c.其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|0<ax-1≤5},B={x|-$\frac{1}{2}$<x≤2},
(Ⅰ)若a=1,求A∪B;
(Ⅱ)若A∩B=∅且a≥0,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)的导函数为f'(x),且满足f(x)=3xf'(1)+2lnx,则f'(1)=(  )
A.-eB.-1C.1D.e

查看答案和解析>>

同步练习册答案